summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--doc/software_manual.org46
-rw-r--r--homeworks/hw-7.org12
-rw-r--r--notes/Nov-27.org2
3 files changed, 60 insertions, 0 deletions
diff --git a/doc/software_manual.org b/doc/software_manual.org
index 134d38d..1520431 100644
--- a/doc/software_manual.org
+++ b/doc/software_manual.org
@@ -1035,6 +1035,52 @@ double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
return lambda;
}
#+END_SRC
+*** ~least_dominant_eigenvalue~
++ Author: Elizabeth Hunt
++ Name: ~least_dominant_eigenvalue~
++ Location: ~src/eigen.c~
++ Input: a pointer to an invertible matrix ~m~, an initial eigenvector guess ~v~ (that is non
+ zero or orthogonal to an eigenvector with the dominant eigenvalue), a ~tolerance~ and
+ ~max_iterations~ that act as stop conditions
++ Output: the least dominant eigenvalue with the lowest magnitude, approximated with the Inverse
+ Power Iteration Method
+#+BEGIN_SRC c
+double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
+ double tolerance, size_t max_iterations) {
+ assert(m->rows == m->cols);
+ assert(m->rows == v->size);
+
+ double shift = 0.0;
+ Matrix_double *m_c = copy_matrix(m);
+ for (size_t y = 0; y < m_c->rows; ++y)
+ m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift;
+
+ double error = tolerance;
+ size_t iter = max_iterations;
+ double lambda = shift;
+ Array_double *eigenvector_1 = copy_vector(v);
+
+ while (error >= tolerance && (--iter) > 0) {
+ Array_double *eigenvector_2 = solve_matrix_lu_bsubst(m_c, eigenvector_1);
+ Array_double *normalized_eigenvector_2 =
+ scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
+ free_vector(eigenvector_2);
+ eigenvector_2 = normalized_eigenvector_2;
+
+ Array_double *mx = m_dot_v(m, eigenvector_2);
+ double new_lambda =
+ v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
+
+ error = fabs(new_lambda - lambda);
+ lambda = new_lambda;
+ free_vector(eigenvector_1);
+ eigenvector_1 = eigenvector_2;
+ }
+
+ return lambda;
+}
+#+END_SRC
+
*** ~leslie_matrix~
+ Author: Elizabeth Hunt
+ Name: ~leslie_matrix~
diff --git a/homeworks/hw-7.org b/homeworks/hw-7.org
index 1a5ebb0..dbdf6bb 100644
--- a/homeworks/hw-7.org
+++ b/homeworks/hw-7.org
@@ -12,4 +12,16 @@ See ~UTEST(eigen, leslie_matrix_dominant_eigenvalue)~ in ~test/eigen.t.c~
and the entry ~Eigen-Adjacent -> leslie_matrix~ in the LIZFCM API
documentation.
* Question Three
+See ~UTEST(eigen, least_dominant_eigenvalue)~ in ~test/eigen.t.c~ which
+finds the least dominant eigenvalue on the matrix:
+\begin{bmatrix}
+2 & 2 & 4 \\
+1 & 4 & 7 \\
+0 & 2 & 6
+\end{bmatrix}
+
+which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$ and should produce $\sqrt{17}$.
+
+See also the entry ~Eigen-Adjacent -> least_dominant_eigenvalue~ in the LIZFCM API
+documentation.
diff --git a/notes/Nov-27.org b/notes/Nov-27.org
index c4d38b0..ae4ded0 100644
--- a/notes/Nov-27.org
+++ b/notes/Nov-27.org
@@ -14,5 +14,7 @@ x^{k + 1} \rightarrow Ax^k
}
x_1[i] = sum / a[i][i];
}
+
+ err = 0.0;
}
#+END_SRC