diff options
Diffstat (limited to 'homeworks/hw-3.org')
-rw-r--r-- | homeworks/hw-3.org | 244 |
1 files changed, 244 insertions, 0 deletions
diff --git a/homeworks/hw-3.org b/homeworks/hw-3.org new file mode 100644 index 0000000..efeaa53 --- /dev/null +++ b/homeworks/hw-3.org @@ -0,0 +1,244 @@ +#+TITLE: HW 03 +#+AUTHOR: Elizabeth Hunt +#+STARTUP: entitiespretty fold inlineimages +#+LATEX_HEADER: \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry} +#+LATEX: \setlength\parindent{0pt} +#+OPTIONS: toc:nil + +* Question One +** Three Terms +\begin{align*} +Si_3(x) &= \int_0^x \frac{s - \frac{s^3}{3!} + \frac{s^5}{5!}}{s} dx \\ +&= x - \frac{x^3}{(3!)(3)} + \frac{x^5}{(5!)(5)} +\end{align*} +** Five Terms +\begin{align*} +Si_3(x) &= \int_0^x \frac{s - \frac{s^3}{3!} + \frac{s^5}{5!} - \frac{s^7}{7!} + \frac{s^9}{9!}}{s} dx \\ +&= x - \frac{x^3}{(3!)(3)} + \frac{x^5}{(5!)(5)} - \frac{x^7}{(7!)(7)} + \frac{s^9}{(9!)(9)} +\end{align*} +** Ten Terms +\begin{align*} +Si_{10}(x) &= \int_0^x \frac{s - \frac{s^3}{3!} + \frac{s^5}{5!} - \frac{s^7}{7!} + \frac{s^9}{9!} - \frac{s^{11}}{11!} + \frac{s^{13}}{13!} - \frac{s^{15}}{15!} + \frac{s^{17}}{17!} - \frac{s^{19}}{19!}}{s} ds \\ +&= x - \frac{x^3}{(3!)(3)} + \frac{x^5}{(5!)(5)} - \frac{x^7}{(7!)(7)} + \frac{s^9}{(9!)(9)} - \frac{s^{11}}{(11!)(11)} + \frac{s^{13}}{(13!)(13)} - \frac{s^{15}}{(15!)(15)} \\ +&+ \frac{s^{17}}{(17!)(17)} - \frac{s^{19}}{(19!)(19)} +\end{align*} +* Question Three +For the second term in the difference quotient, we can expand the taylor series centered at x=a: + +\begin{equation*} +f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots \\ +\end{equation*} + +Which we substitute into the difference quotient: + +\begin{equation*} +\frac{f(a) - f(a - h)}{h} = \frac{f(a) - (f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots)}{h} +\end{equation*} + +And subs. $x=a-h$: + +\begin{align*} +\frac{f(a) - (f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots)}{h} &= -f'(a)(-1) + -\frac{1}{2}f''(a)h \\ +&= f'(a) - \frac{1}{2}f''(a)h + \cdots \\ +\end{align*} + +Which we now plug into the initial $e_{\text{abs}}$: + +\begin{align*} +e_{\text{abs}} &= |f'(a) - \frac{f(a) - f(a - h)}{h}| \\ +&= |f'(a) - (f'(a) + -\frac{f''(a)}{2}h + \cdots)| \\ +&= |- \frac{1}{2}f''(a)h + \cdots | \\ +\end{align*} + +With the Taylor Remainder theorem we can absorb the series following the second term: + +\begin{equation*} +e_{\text{abs}} = |- \frac{1}{2}f''(a)h + \cdots | = |\frac{1}{2}f''(\xi)h| \leq Ch +\end{equation*} + +Thus our error is bounded linearly with $h$. + +* Question Four +For the first term in the difference quotient we know, from the given notes, + +\begin{equation*} +f(a+h) = f(a) + f'(a)h + \frac{1}{2}f''(a)h^2 + \frac{1}{6}f'''(a)(h^3) +\end{equation*} + +And from some of the work in Question Three, + +\begin{equation*} +f(a - h) = f(a) + f'(a)(-h) + \frac{1}{2}f''(a)(-h)^2 + \frac{1}{6}f'''(a)(-h^3) +\end{equation*} + +We can substitute immediately into $e_{\text{abs}} = |f'(a) - (\frac{f(a+h) - f(a-h)}{2h})|$: + +\begin{align*} +e_{\text{abs}} &= |f'(a) - \frac{1}{2h}((f(a) + f'(a)h + \frac{1}{2}f''(a)h^2 + \cdots) - (f(a) - f'(a)h + \frac{1}{2}f''(a)h^2 + \cdots))| \\ +&= |f'(a) - \frac{1}{2h}(2f'(a)h + \frac{1}{6}f'''(a)h^3 + \cdots)| \\ +&= |f'(a) - f'(a) - \frac{1}{12}f'''(a)h^2 + \cdots| \\ +&= |-\frac{1}{12}f'''(a)h^2 + \cdots| +\end{align*} + +Finally, with the Taylor Remainder theorem we can absorb the series following the third term: + +\begin{equation*} +e_{\text{abs}} = |-\frac{1}{12}f'''(\xi)h^2| = |\frac{1}{12}f'''(\xi)h^2| \leq Ch^2 +\end{equation*} + +Meaning that as $h$ scales linearly, our error is bounded by $h^2$ as opposed to linearly as in Question Three. + +* Question Six +** A +#+BEGIN_SRC lisp + (load "../lizfcm.asd") + (ql:quickload :lizfcm) + + (defun f (x) + (/ (- x 1) (+ x 1))) + + (defun fprime (x) + (/ 2 (expt (+ x 1) 2))) + + (let ((domain-values (loop for a from 0 to 2 + append + (loop for i from 0 to 9 + for h = (/ 1.0 (expt 2 i)) + collect (list a h))))) + (lizfcm.utils:table (:headers '("a" "h" "f'" "\\approx f'" "e_{\\text{abs}}") + :domain-order (a h) + :domain-values domain-values) + (fprime a) + (lizfcm.approx:fwd-derivative-at 'f a h) + (abs (- (fprime a) + (lizfcm.approx:fwd-derivative-at 'f a h))))) +#+END_SRC + +#+RESULTS: +| a | h | f' | \approx f' | e_{\text{abs}} | +| 0 | 1.0 | 2 | 1.0 | 1.0 | +| 0 | 0.5 | 2 | 1.3333333 | 0.66666675 | +| 0 | 0.25 | 2 | 1.5999999 | 0.4000001 | +| 0 | 0.125 | 2 | 1.7777777 | 0.22222233 | +| 0 | 0.0625 | 2 | 1.8823528 | 0.11764717 | +| 0 | 0.03125 | 2 | 1.939394 | 0.060606003 | +| 0 | 0.015625 | 2 | 1.9692307 | 0.030769348 | +| 0 | 0.0078125 | 2 | 1.9844971 | 0.01550293 | +| 0 | 0.00390625 | 2 | 1.992218 | 0.0077819824 | +| 0 | 0.001953125 | 2 | 1.9960938 | 0.00390625 | +| 1 | 1.0 | 1/2 | 0.33333334 | 0.16666666 | +| 1 | 0.5 | 1/2 | 0.4 | 0.099999994 | +| 1 | 0.25 | 1/2 | 0.44444445 | 0.055555552 | +| 1 | 0.125 | 1/2 | 0.47058824 | 0.029411763 | +| 1 | 0.0625 | 1/2 | 0.4848485 | 0.015151501 | +| 1 | 0.03125 | 1/2 | 0.4923077 | 0.0076923072 | +| 1 | 0.015625 | 1/2 | 0.49612403 | 0.0038759708 | +| 1 | 0.0078125 | 1/2 | 0.49805447 | 0.0019455254 | +| 1 | 0.00390625 | 1/2 | 0.49902534 | 0.00097465515 | +| 1 | 0.001953125 | 1/2 | 0.4995122 | 0.0004878044 | +| 2 | 1.0 | 2/9 | 0.16666666 | 0.055555567 | +| 2 | 0.5 | 2/9 | 0.19047618 | 0.031746045 | +| 2 | 0.25 | 2/9 | 0.2051282 | 0.017094031 | +| 2 | 0.125 | 2/9 | 0.21333337 | 0.008888856 | +| 2 | 0.0625 | 2/9 | 0.21768713 | 0.004535094 | +| 2 | 0.03125 | 2/9 | 0.21993065 | 0.002291575 | +| 2 | 0.015625 | 2/9 | 0.22106934 | 0.0011528879 | +| 2 | 0.0078125 | 2/9 | 0.22164536 | 0.00057686865 | +| 2 | 0.00390625 | 2/9 | 0.22193146 | 0.00029076636 | +| 2 | 0.001953125 | 2/9 | 0.22207642 | 0.00014580786 | + + +* Question Nine +** C + +#+BEGIN_SRC lisp + (load "../lizfcm.asd") + (ql:quickload :lizfcm) + + (defun factorial (n) + (if (= n 0) + 1 + (* n (factorial (- n 1))))) + + (defun taylor-term (n x) + (/ (* (expt (- 1) n) + (expt x (+ (* 2 n) 1))) + (* (factorial n) + (+ (* 2 n) 1)))) + + (defun f (x &optional (max-iterations 30)) + (let ((sum 0.0)) + (dotimes (n max-iterations) + (setq sum (+ sum (taylor-term n x)))) + (* sum (/ 2 (sqrt pi))))) + + (defun fprime (x) + (* (/ 2 (sqrt pi)) (exp (- 0 (* x x))))) + + (let ((domain-values (loop for a from 0 to 1 + append + (loop for i from 0 to 9 + for h = (/ 1.0 (expt 2 i)) + collect (list a h))))) + (lizfcm.utils:table (:headers '("a" "h" "f'" "\\approx f'" "e_{\\text{abs}}") + :domain-order (a h) + :domain-values domain-values) + (fprime a) + (lizfcm.approx:central-derivative-at 'f a h) + (abs (- (fprime a) + (lizfcm.approx:central-derivative-at 'f a h))))) +#+END_SRC + + +| a | h | f' | \approx f' | e_{\text{abs}} | +| 0 | 1.0 | 1.1283791670955126d0 | 0.8427006725464232d0 | 0.28567849454908933d0 | +| 0 | 0.5 | 1.1283791670955126d0 | 1.0409997446922075d0 | 0.0873794224033051d0 | +| 0 | 0.25 | 1.1283791670955126d0 | 1.1053055663206806d0 | 0.023073600774832004d0 | +| 0 | 0.125 | 1.1283791670955126d0 | 1.122529655394656d0 | 0.005849511700856569d0 | +| 0 | 0.0625 | 1.1283791670955126d0 | 1.1269116944798618d0 | 0.0014674726156507223d0 | +| 0 | 0.03125 | 1.1283791670955126d0 | 1.1280120131008824d0 | 3.6715399463016496d-4 | +| 0 | 0.015625 | 1.1283791670955126d0 | 1.1282873617826952d0 | 9.180531281738347d-5 | +| 0 | 0.0078125 | 1.1283791670955126d0 | 1.128356232581468d0 | 2.293451404455915d-5 | +| 0 | 0.00390625 | 1.1283791670955126d0 | 1.1283734502811613d0 | 5.71681435124205d-6 | +| 0 | 0.001953125 | 1.1283791670955126d0 | 1.1283777547060847d0 | 1.4123894278572635d-6 | +| 1 | 1.0 | 0.41510750774498784d0 | 0.4976611317561498d0 | 0.08255362401116195d0 | +| 1 | 0.5 | 0.41510750774498784d0 | 0.44560523266293384d0 | 0.030497724917946d0 | +| 1 | 0.25 | 0.41510750774498784d0 | 0.4234889628937013d0 | 0.008381455148713468d0 | +| 1 | 0.125 | 0.41510750774498784d0 | 0.41725265825950153d0 | 0.002145150514513694d0 | +| 1 | 0.0625 | 0.41510750774498784d0 | 0.41564710776310854d0 | 5.396000181207006d-4 | +| 1 | 0.03125 | 0.41510750774498784d0 | 0.4152414157140871d0 | 1.3390796909928948d-4 | +| 1 | 0.015625 | 0.41510750774498784d0 | 0.41514241394084905d0 | 3.490619586121735d-5 | +| 1 | 0.0078125 | 0.41510750774498784d0 | 0.41510582632900395d0 | 1.6814159838896003d-6 | +| 1 | 0.00390625 | 0.41510750774498784d0 | 0.415092913054238d0 | 1.4594690749825112d-5 | +| 1 | 0.001953125 | 0.41510750774498784d0 | 0.4150670865046777d0 | 4.0421240310117845d-5 | + + +* Question Twelve + +First we'll place a bound on $h$; looking at a graph of $f$ it's pretty obvious from the asymptotes that we don't want to go much further than $|h| = 2 - \frac{pi}{2}$. + +Following similar reasoning as Question Four, we can determine an optimal $h$ by computing $e_{\text{abs}}$ for the central difference, but now including a roundoff error for each time we run $f$ +such that $|f_{\text{machine}}(x) - f(x)| \le \epsilon_{\text{dblprec}}$ (we'll use double precision numbers, from HW 2 we know $\epsilon_{\text{dblprec}} \approx 2.22045 (10^{-16})$). + +We'll just assume $|f_{\text{machine}}(x) - f(x)| = \epsilon_{\text{dblprec}}$ so our new difference quotient becomes: + +\begin{align*} +e_{\text{abs}} &= |f'(a) - (\frac{f(a+h) - f(a-h) + 2\epsilon_{\text{dblprec}}}{2h})| \\ +&= |\frac{1}{12}f'''(\xi)h^2 + \frac{\epsilon_{\text{dblprec}}}{h}| +\end{align*} + +Because we bounded our $|h| = 2 - \frac{pi}{2}$ we'll find the maximum value of $f'''$ between $a - (2 - \frac{\pi}{2})$ and $a - (2 - \frac{\pi}{3})$. Using [[https://www.desmos.com/calculator/gen1zpohh2][desmos]] I found this to be -2. + +Thus, $e_{\text{abs}} \leq \frac{1}{6}h^2 + \frac{\epsilon_{\text{dblprec}}}{h}$. Finding the derivative: + +\begin{equation*} +e' = \frac{1}{3}h - \frac{\epsilon_{\text{dblprec}}}{h^2} +\end{equation*} + +And solving at $e' = 0$: + +\begin{equation*} +\frac{1}{3}h = \frac{\epsilon_{\text{dblprec}}}{h^2} \Rightarrow h^3 = 3\epsilon_{\text{dblprec}} \Rightarrow h = (3\epsilon_{\text{dblprec}})^{1/3} +\end{equation*} + +Which is $\approx (3(2.22045 (10^{-16}))^{\frac{1}{3}} \approx 8.7335 10^{-6}$. |