From 562ba9a9b6efd8cc27fc506f83b1125c2cfa4619 Mon Sep 17 00:00:00 2001 From: Elizabeth Hunt Date: Mon, 30 Oct 2023 19:07:43 -0600 Subject: hw 5 --- notes/Oct-30.org | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) create mode 100644 notes/Oct-30.org (limited to 'notes/Oct-30.org') diff --git a/notes/Oct-30.org b/notes/Oct-30.org new file mode 100644 index 0000000..7d6ee03 --- /dev/null +++ b/notes/Oct-30.org @@ -0,0 +1,34 @@ +* Power Method for computing the largest eigenvalue of a square matrix + +An eigenvector, v \in R^n is a nonzero vector such that for some number, \lambda \in C, Av = \lambda v +\Rightarrow || v || = 1 + + +Suppose we start with some vector v and assume, v = \alpha_0 v_0 + \alpha_1 v_1 + \cdots + \alpha_n v_n, where {v_1, \cdots, v_n} +are the eigenvectors of A. Assume {v_1, \cdots, v_n} is a basis for R^n + +We can order the eigenvalues such that \lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n + +Compute u = Av += A(\alpha_1 v_1 + \cdots + \alpha_n v_n) += \alpha_1 Av_1 + A(\cdots) + \alpha_n A v_n += \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 + \cdots + \alpha_n \lambda_n v_n + +w = A (Av) += \alpha_1 \lambda_1^2 v_1 + \alpha_2 \lambda_2^2 v_2 + \cdots + \alpha_n \lambda_n^2 v_n + +Thus, +A^k v = \alpha_1 \lambda_1^k v_1 + \alpha_2 \lambda_2^k v_2 + \cdots + \alpha_n \lambda_n^k v_n += \lambda_1^k ( \alpha_1 v_1 + \alpha_2 \frac{\lambda_2^k}{\lambda_1^k} v_2 + \cdots + \alpha_n \frac{\lambda_3^k}{\lambda_1^k} v_n) + +As k \rightarrow \infty +A^k v = \lambda_1^k (\alpha_1 v_1) + \text{negligble terms} + +Algorithm: +v \ne 0 with v \in R^n +y = Av = \alpha_1 v_1 + \cdots + \alpha_n v_n + +w = \frac{1}{||y||} \cdot y + +Rayleigh Quotient: +If $v$ is an eigenvector of A with eigenvalue \lambda then \frac{v^T A v}{v^T v} = \lambda -- cgit v1.2.3-70-g09d2