#include "game.cuh" // Count the number of life neighbors a cell has __device__ int neighbors(struct GAME game, int x, int y) { int n = 0; for (int dy = -1; dy <= 1; dy++) { for (int dx = -1; dx <= 1; dx++) { if (!(dx == 0 && dy == 0) && (x+dx) > 0 && (y+dy) > 0 && (x+dx) < game.width+(game.padding*2) && (y+dy) < game.height+(game.padding*2)) { if (game.grid[(y+dy) * (game.width+game.padding*2) + (x+dx)]) { n++; } } } } return n; } // Compute the next iteration of a board // We have to give it the newGrid as a parameter otherwise // each block will be computing its own version of the next grid __global__ void next(struct GAME game, unsigned char* newGrid) { int idy = blockDim.y * blockIdx.y + threadIdx.y; int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idy < game.height+game.padding*2 && idx < game.width+game.padding*2) { int my_neighbors = neighbors(game, idx, idy); int my_coord = idy * (game.width+game.padding*2) + idx; newGrid[my_coord] = 0; // It's possible that there are artifacts from the last iteration if (game.grid[my_coord]) { if (my_neighbors < 2 || my_neighbors > 3) { newGrid[my_coord] = 0; } else { newGrid[my_coord] = 1; } } else { if (my_neighbors == 3) { newGrid[my_coord] = 1; } } } } // Randomly assign life value to each cell void randomize(struct GAME* game) { for (int y = game->padding; y < game->height+game->padding; y++) { for (int x = game->padding; x < game->width+game->padding; x++) { game->grid[y*(game->width+game->padding*2) + x] = (unsigned char) rand() & 1; } } }