diff options
author | Elizabeth Hunt <elizabeth.hunt@simponic.xyz> | 2023-11-27 15:13:34 -0700 |
---|---|---|
committer | Elizabeth Hunt <elizabeth.hunt@simponic.xyz> | 2023-11-27 15:13:34 -0700 |
commit | f0b420e8cdd3736e64122c64ab6057b19a12bffc (patch) | |
tree | f8a3ee4b49fdd098138c2fd2c01355926febc22a /homeworks | |
parent | 0981ffa00ce520df1134714206a70bcc1a08303e (diff) | |
download | cmath-f0b420e8cdd3736e64122c64ab6057b19a12bffc.tar.gz cmath-f0b420e8cdd3736e64122c64ab6057b19a12bffc.zip |
recompile software manual after hw 7 and hw 7 p6
Diffstat (limited to 'homeworks')
-rw-r--r-- | homeworks/hw-7.org | 17 | ||||
-rw-r--r-- | homeworks/hw-7.pdf | bin | 0 -> 119259 bytes | |||
-rw-r--r-- | homeworks/hw-7.tex | 107 |
3 files changed, 123 insertions, 1 deletions
diff --git a/homeworks/hw-7.org b/homeworks/hw-7.org index e18d1ee..2c28af2 100644 --- a/homeworks/hw-7.org +++ b/homeworks/hw-7.org @@ -1,4 +1,4 @@ -#+TITLE: Homework 6 +#+TITLE: Homework 7 #+AUTHOR: Elizabeth Hunt #+LATEX_HEADER: \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry} #+LATEX: \setlength\parindent{0pt} @@ -58,4 +58,19 @@ See also the entry ~Eigen-Adjacent -> partition_find_eigenvalues~ in the LIZFCM documentation. * Question Six +Consider we have the results of two methods developed in this homework: ~least_dominant_eigenvalue~, and ~dominant_eigenvalue~ +into ~lambda_0~, ~lambda_n~, respectively. Also assume that we have the method implemented as we've introduced, +~shift_inverse_power_eigenvalue~. +Then, we begin at the midpoint of ~lambda_0~ and ~lambda_n~, and compute the +~new_lambda = shift_inverse_power_eigenvalue~ +with a shift at the midpoint, and some given initial guess. + +1. If the result is equal (or within some tolerance) to ~lambda_n~ then the closest eigenvalue to the midpoint + is still the dominant eigenvalue, and thus the next most dominant will be on the left. Set ~lambda_n~ + to the midpoint and reiterate. +2. If the result is greater or equal to ~lambda_0~ we know an eigenvalue of greater or equal magnitude + exists on the right. So, we set ~lambda_0~ to this eigenvalue associated with the midpoint, and + re-iterate. +3. Continue re-iterating until we hit some given maximum number of iterations. Finally we will return + ~new_lambda~. diff --git a/homeworks/hw-7.pdf b/homeworks/hw-7.pdf Binary files differnew file mode 100644 index 0000000..4003f59 --- /dev/null +++ b/homeworks/hw-7.pdf diff --git a/homeworks/hw-7.tex b/homeworks/hw-7.tex new file mode 100644 index 0000000..be3fde4 --- /dev/null +++ b/homeworks/hw-7.tex @@ -0,0 +1,107 @@ +% Created 2023-11-27 Mon 15:13 +% Intended LaTeX compiler: pdflatex +\documentclass[11pt]{article} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} +\usepackage{longtable} +\usepackage{wrapfig} +\usepackage{rotating} +\usepackage[normalem]{ulem} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{capt-of} +\usepackage{hyperref} +\notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry} +\author{Elizabeth Hunt} +\date{\today} +\title{Homework 7} +\hypersetup{ + pdfauthor={Elizabeth Hunt}, + pdftitle={Homework 7}, + pdfkeywords={}, + pdfsubject={}, + pdfcreator={Emacs 29.1 (Org mode 9.7-pre)}, + pdflang={English}} +\begin{document} + +\maketitle +\setlength\parindent{0pt} +\section{Question One} +\label{sec:org8ef0ee6} +See \texttt{UTEST(eigen, dominant\_eigenvalue)} in \texttt{test/eigen.t.c} and the entry +\texttt{Eigen-Adjacent -> dominant\_eigenvalue} in the LIZFCM API documentation. +\section{Question Two} +\label{sec:orgbdba5c1} +See \texttt{UTEST(eigen, leslie\_matrix\_dominant\_eigenvalue)} in \texttt{test/eigen.t.c} +and the entry \texttt{Eigen-Adjacent -> leslie\_matrix} in the LIZFCM API +documentation. +\section{Question Three} +\label{sec:org19b04f4} +See \texttt{UTEST(eigen, least\_dominant\_eigenvalue)} in \texttt{test/eigen.t.c} which +finds the least dominant eigenvalue on the matrix: + +\begin{bmatrix} +2 & 2 & 4 \\ +1 & 4 & 7 \\ +0 & 2 & 6 +\end{bmatrix} + +which has eigenvalues: \(5 + \sqrt{17}, 2, 5 - \sqrt{17}\) and should thus produce \(5 - \sqrt{17}\). + +See also the entry \texttt{Eigen-Adjacent -> least\_dominant\_eigenvalue} in the LIZFCM API +documentation. +\section{Question Four} +\label{sec:orgc58d42d} +See \texttt{UTEST(eigen, shifted\_eigenvalue)} in \texttt{test/eigen.t.c} which +finds the least dominant eigenvalue on the matrix: + +\begin{bmatrix} +2 & 2 & 4 \\ +1 & 4 & 7 \\ +0 & 2 & 6 +\end{bmatrix} + +which has eigenvalues: \(5 + \sqrt{17}, 2, 5 - \sqrt{17}\) and should thus produce \(2.0\). + +With the initial guess: \([0.5, 1.0, 0.75]\). + +See also the entry \texttt{Eigen-Adjacent -> shift\_inverse\_power\_eigenvalue} in the LIZFCM API +documentation. +\section{Question Five} +\label{sec:orga369221} +See \texttt{UTEST(eigen, partition\_find\_eigenvalues)} in \texttt{test/eigen.t.c} which +finds the eigenvalues in a partition of 10 on the matrix: + +\begin{bmatrix} +2 & 2 & 4 \\ +1 & 4 & 7 \\ +0 & 2 & 6 +\end{bmatrix} + +which has eigenvalues: \(5 + \sqrt{17}, 2, 5 - \sqrt{17}\), and should produce all three from +the partitions when given the guesses \([0.5, 1.0, 0.75]\) from the questions above. + +See also the entry \texttt{Eigen-Adjacent -> partition\_find\_eigenvalues} in the LIZFCM API +documentation. +\section{Question Six} +\label{sec:orgadc3078} +Consider we have the results of two methods developed in this homework: \texttt{least\_dominant\_eigenvalue}, and \texttt{dominant\_eigenvalue} +into \texttt{lambda\_0}, \texttt{lambda\_n}, respectively. Also assume that we have the method implemented as we've introduced, +\texttt{shift\_inverse\_power\_eigenvalue}. + +Then, we begin at the midpoint of \texttt{lambda\_0} and \texttt{lambda\_n}, and compute the +\texttt{new\_lambda = shift\_inverse\_power\_eigenvalue} +with a shift at the midpoint, and some given initial guess. + +\begin{enumerate} +\item If the result is equal (or within some tolerance) to \texttt{lambda\_n} then the closest eigenvalue to the midpoint +is still the dominant eigenvalue, and thus the next most dominant will be on the left. Set \texttt{lambda\_n} +to the midpoint and reiterate. +\item If the result is greater or equal to \texttt{lambda\_0} we know an eigenvalue of greater or equal magnitude +exists on the right. So, we set \texttt{lambda\_0} to this eigenvalue associated with the midpoint, and +re-iterate. +\item Continue re-iterating until we hit some given maximum number of iterations. Finally we will return +\texttt{new\_lambda}. +\end{enumerate} +\end{document} |