diff options
author | Elizabeth Hunt <elizabeth.hunt@simponic.xyz> | 2023-09-25 10:36:23 -0600 |
---|---|---|
committer | Elizabeth Hunt <elizabeth.hunt@simponic.xyz> | 2023-09-25 10:36:23 -0600 |
commit | 58c73fd511b77cb94124b71a4bb75c7ab6a6d8bc (patch) | |
tree | 25ae52afe365de29973efbb10fdecf2712deb430 /notes/Sep-15.org | |
parent | 2e284b71500a1f8dc6cc46ecf21eb1e9389ea780 (diff) | |
download | cmath-58c73fd511b77cb94124b71a4bb75c7ab6a6d8bc.tar.gz cmath-58c73fd511b77cb94124b71a4bb75c7ab6a6d8bc.zip |
add september notes & hw2 code / pdf
Diffstat (limited to 'notes/Sep-15.org')
-rw-r--r-- | notes/Sep-15.org | 52 |
1 files changed, 52 insertions, 0 deletions
diff --git a/notes/Sep-15.org b/notes/Sep-15.org new file mode 100644 index 0000000..d5bf371 --- /dev/null +++ b/notes/Sep-15.org @@ -0,0 +1,52 @@ +* Taylor Series Approx. +Suppose f has $\infty$ many derivatives near a point a. Then the taylor series is given by + +$f(x) = \Sigma_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$ + +For increment notation we can write + +$f(a + h) = f(a) + f'(a)(a+h - a) + \dots$ + +$= \Sigma_{n=0}^{\infty} \frac{f^{(n)}(a)}{h!} (h^n)$ + +Consider the approximation + +$e = |f'(a) - \frac{f(a + h) - f(a)}{h}| = |f'(a) - \frac{1}{h}(f(a + h) - f(a))|$ + +Substituting... + +$= |f'(a) - \frac{1}{h}((f(a) + f'(a) h + \frac{f''(a)}{2} h^2 + \cdots) - f(a))|$ + +$f(a) - f(a) = 0$... and $distribute the h$ + +$= |-1/2 f''(a) h + \frac{1}{6}f'''(a)h^2 \cdots|$ + +** With Remainder +We can determine for some u $f(a + h) = f(a) + f'(a)h + \frac{1}{2}f''(u)h^2$ + +and so the error is $e = |f'(a) - \frac{f(a + h) - f(a)}{h}| = |\frac{h}{2}f''(u)|$ + +- [https://openstax.org/books/calculus-volume-2/pages/6-3-taylor-and-maclaurin-series] + + > Taylor's Theorem w/ Remainder + + +** Of Deriviatives + +Again, $f'(a) \approx \frac{f(a+h) - f(a)}{h}$, + +$e = |\frac{1}{2} f''(a) + \frac{1}{3!}h^2 f'''(a) + \cdots$ + +$R_2 = \frac{h}{2} f''(u)$ + +$|\frac{h}{2} f''(u)| \leq M h^1$ + +$M = \frac{1}{2}|f'(u)|$ + +*** Another approximation + +$\text{err} = |f'(a) - \frac{f(a) - f(a - h)}{h}|$ + +$= f'(a) - \frac{1}{h}(f(a) - (f(a) + f'(a)(a - (a - h)) + \frac{1}{2}f''(a)(a-(a-h))^2 + \cdots))$ + +$= |f'(a) - \frac{1}{h}(f'(a) + \frac{1}{2}f''(a)h)|$ + |