diff options
author | Elizabeth Hunt <elizabeth.hunt@simponic.xyz> | 2023-10-09 21:08:25 -0600 |
---|---|---|
committer | Elizabeth Hunt <elizabeth.hunt@simponic.xyz> | 2023-10-09 21:08:25 -0600 |
commit | adda6869cb2a07984b48c39fcd70ee76449c353d (patch) | |
tree | 3aff88b65292e2ab0e108781206d954a015b2e33 /notes/Sep-15.tex | |
parent | b35e3998333e8190bf07ade51dba30773b3a3d0b (diff) | |
download | cmath-adda6869cb2a07984b48c39fcd70ee76449c353d.tar.gz cmath-adda6869cb2a07984b48c39fcd70ee76449c353d.zip |
updates 10/9
Diffstat (limited to 'notes/Sep-15.tex')
-rw-r--r-- | notes/Sep-15.tex | 88 |
1 files changed, 88 insertions, 0 deletions
diff --git a/notes/Sep-15.tex b/notes/Sep-15.tex new file mode 100644 index 0000000..52610ed --- /dev/null +++ b/notes/Sep-15.tex @@ -0,0 +1,88 @@ +% Created 2023-09-29 Fri 10:00 +% Intended LaTeX compiler: pdflatex +\documentclass[11pt]{article} +\usepackage[utf8]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{graphicx} +\usepackage{longtable} +\usepackage{wrapfig} +\usepackage{rotating} +\usepackage[normalem]{ulem} +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{capt-of} +\usepackage{hyperref} +\author{Elizabeth Hunt} +\date{\today} +\title{} +\hypersetup{ + pdfauthor={Elizabeth Hunt}, + pdftitle={}, + pdfkeywords={}, + pdfsubject={}, + pdfcreator={Emacs 28.2 (Org mode 9.7-pre)}, + pdflang={English}} +\begin{document} + +\tableofcontents + +\section{Taylor Series Approx.} +\label{sec:orgcc72ed1} +Suppose f has \(\infty\) many derivatives near a point a. Then the taylor series is given by + +\(f(x) = \Sigma_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n\) + +For increment notation we can write + +\(f(a + h) = f(a) + f'(a)(a+h - a) + \dots\) + +\(= \Sigma_{n=0}^{\infty} \frac{f^{(n)}(a)}{h!} (h^n)\) + +Consider the approximation + +\(e = |f'(a) - \frac{f(a + h) - f(a)}{h}| = |f'(a) - \frac{1}{h}(f(a + h) - f(a))|\) + +Substituting\ldots{} + +\(= |f'(a) - \frac{1}{h}((f(a) + f'(a) h + \frac{f''(a)}{2} h^2 + \cdots) - f(a))|\) + +\(f(a) - f(a) = 0\)\ldots{} and \(distribute the h\) + +\(= |-1/2 f''(a) h + \frac{1}{6}f'''(a)h^2 \cdots|\) + +\subsection{With Remainder} +\label{sec:org7dfd6c7} +We can determine for some u \(f(a + h) = f(a) + f'(a)h + \frac{1}{2}f''(u)h^2\) + +and so the error is \(e = |f'(a) - \frac{f(a + h) - f(a)}{h}| = |\frac{h}{2}f''(u)|\) + +\begin{itemize} +\item\relax [\url{https://openstax.org/books/calculus-volume-2/pages/6-3-taylor-and-maclaurin-series}] +\begin{itemize} +\item > Taylor's Theorem w/ Remainder +\end{itemize} +\end{itemize} + + +\subsection{Of Deriviatives} +\label{sec:org1ec7c9b} + +Again, \(f'(a) \approx \frac{f(a+h) - f(a)}{h}\), + +\(e = |\frac{1}{2} f''(a) + \frac{1}{3!}h^2 f'''(a) + \cdots\) + +\(R_2 = \frac{h}{2} f''(u)\) + +\(|\frac{h}{2} f''(u)| \leq M h^1\) + +\(M = \frac{1}{2}|f'(u)|\) + +\subsubsection{Another approximation} +\label{sec:org16193b9} + +\(\text{err} = |f'(a) - \frac{f(a) - f(a - h)}{h}|\) + +\(= f'(a) - \frac{1}{h}(f(a) - (f(a) + f'(a)(a - (a - h)) + \frac{1}{2}f''(a)(a-(a-h))^2 + \cdots))\) + +\(= |f'(a) - \frac{1}{h}(f'(a) + \frac{1}{2}f''(a)h)|\) +\end{document}
\ No newline at end of file |