summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--doc/software_manual.org4
-rw-r--r--doc/software_manual.pdfbin179781 -> 185665 bytes
-rw-r--r--doc/software_manual.tex293
-rw-r--r--homeworks/hw-5.org2
-rw-r--r--homeworks/hw-5.pdfbin81313 -> 81812 bytes
-rw-r--r--homeworks/hw-5.tex22
-rw-r--r--notes/Nov-3.org62
7 files changed, 312 insertions, 71 deletions
diff --git a/doc/software_manual.org b/doc/software_manual.org
index eebcf17..383b0c5 100644
--- a/doc/software_manual.org
+++ b/doc/software_manual.org
@@ -27,7 +27,7 @@ MacOS as well as ~x86~ Arch Linux.
2. ~make~
Then, as of homework 5, the testing routines are provided in ~test~ and utilize the
-utest microlibrary. They compile to a binary in ~./dist/lizfcm.test~.
+~utest~ "micro"library. They compile to a binary in ~./dist/lizfcm.test~.
Execution of the Makefile will perform compilation of individual routines.
@@ -39,7 +39,7 @@ produce an object file:
gcc -Iinc/ -lm -Wall -c src/<the_routine>.c -o build/<the_routine>.o
\end{verbatim}
-Which is then bundled into a static library in ~lib/lizfcm.a~ which can be linked
+Which is then bundled into a static library in ~lib/lizfcm.a~ and can be linked
in the standard method.
* The LIZFCM API
diff --git a/doc/software_manual.pdf b/doc/software_manual.pdf
index 8cd70f4..d6c03b3 100644
--- a/doc/software_manual.pdf
+++ b/doc/software_manual.pdf
Binary files differ
diff --git a/doc/software_manual.tex b/doc/software_manual.tex
index c6eb910..4d465e6 100644
--- a/doc/software_manual.tex
+++ b/doc/software_manual.tex
@@ -1,4 +1,4 @@
-% Created 2023-10-30 Mon 09:44
+% Created 2023-11-01 Wed 20:52
% Intended LaTeX compiler: pdflatex
\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
@@ -31,7 +31,7 @@
\setlength\parindent{0pt}
\section{Design}
-\label{sec:org7f9c526}
+\label{sec:org9458aa0}
The LIZFCM static library (at \url{https://github.com/Simponic/math-4610}) is a successor to my
attempt at writing codes for the Fundamentals of Computational Mathematics course in Common
Lisp, but the effort required to meet the requirement of creating a static library became
@@ -44,13 +44,14 @@ the C programming language. I have a couple tenets for its design:
\begin{itemize}
\item Implementations of routines should all be done immutably in respect to arguments.
\item Functional programming is good (it's\ldots{} rough in C though).
-\item Routines are separated into "module" c files, and not individual files per function.
+\item Routines are separated into "modules" that follow a form of separation of concerns
+in files, and not individual files per function.
\end{itemize}
\section{Compilation}
-\label{sec:org911a41e}
-A provided \texttt{Makefile} is added for convencience. It has been tested on an M1 machine running MacOS as
-well as Arch Linux.
+\label{sec:orge0bab70}
+A provided \texttt{Makefile} is added for convencience. It has been tested on an \texttt{arm}-based M1 machine running
+MacOS as well as \texttt{x86} Arch Linux.
\begin{enumerate}
\item \texttt{cd} into the root of the repo
@@ -58,7 +59,7 @@ well as Arch Linux.
\end{enumerate}
Then, as of homework 5, the testing routines are provided in \texttt{test} and utilize the
-utest microlibrary. They compile to a binary in \texttt{./dist/lizfcm.test}.
+\texttt{utest} "micro"library. They compile to a binary in \texttt{./dist/lizfcm.test}.
Execution of the Makefile will perform compilation of individual routines.
@@ -74,11 +75,11 @@ Which is then bundled into a static library in \texttt{lib/lizfcm.a} which can b
in the standard method.
\section{The LIZFCM API}
-\label{sec:orgd74cd2d}
+\label{sec:org91f4707}
\subsection{Simple Routines}
-\label{sec:org66bba13}
+\label{sec:orgc8c57e4}
\subsubsection{\texttt{smaceps}}
-\label{sec:orgeae9531}
+\label{sec:orgfeb6ef6}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{smaceps}
@@ -104,7 +105,7 @@ float smaceps() {
\end{verbatim}
\subsubsection{\texttt{dmaceps}}
-\label{sec:org237c904}
+\label{sec:orgb3dc0f2}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{dmaceps}
@@ -130,9 +131,9 @@ double dmaceps() {
\end{verbatim}
\subsection{Derivative Routines}
-\label{sec:org9cf9027}
+\label{sec:orge88d677}
\subsubsection{\texttt{central\_derivative\_at}}
-\label{sec:org1fcd333}
+\label{sec:org32a8384}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{central\_derivative\_at}
@@ -163,7 +164,7 @@ double central_derivative_at(double (*f)(double), double a, double h) {
\end{verbatim}
\subsubsection{\texttt{forward\_derivative\_at}}
-\label{sec:org6a768fc}
+\label{sec:orgb6fdb9a}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{forward\_derivative\_at}
@@ -194,7 +195,7 @@ double forward_derivative_at(double (*f)(double), double a, double h) {
\end{verbatim}
\subsubsection{\texttt{backward\_derivative\_at}}
-\label{sec:org610ce76}
+\label{sec:org8b6070e}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{backward\_derivative\_at}
@@ -225,9 +226,9 @@ double backward_derivative_at(double (*f)(double), double a, double h) {
\end{verbatim}
\subsection{Vector Routines}
-\label{sec:orgfd176e6}
+\label{sec:org161e049}
\subsubsection{Vector Arithmetic: \texttt{add\_v, minus\_v}}
-\label{sec:org2dbc55f}
+\label{sec:org938756a}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name(s): \texttt{add\_v}, \texttt{minus\_v}
@@ -258,7 +259,7 @@ Array_double *minus_v(Array_double *v1, Array_double *v2) {
\end{verbatim}
\subsubsection{Norms: \texttt{l1\_norm}, \texttt{l2\_norm}, \texttt{linf\_norm}}
-\label{sec:org53a2ffc}
+\label{sec:org53e3d42}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name(s): \texttt{l1\_norm}, \texttt{l2\_norm}, \texttt{linf\_norm}
@@ -292,7 +293,7 @@ double linf_norm(Array_double *v) {
\end{verbatim}
\subsubsection{\texttt{vector\_distance}}
-\label{sec:org1fb3f8c}
+\label{sec:org31d6d43}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{vector\_distance}
@@ -313,7 +314,7 @@ double vector_distance(Array_double *v1, Array_double *v2,
\end{verbatim}
\subsubsection{Distances: \texttt{l1\_distance}, \texttt{l2\_distance}, \texttt{linf\_distance}}
-\label{sec:org4a25a94}
+\label{sec:org3c2cede}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name(s): \texttt{l1\_distance}, \texttt{l2\_distance}, \texttt{linf\_distance}
@@ -339,7 +340,7 @@ double linf_distance(Array_double *v1, Array_double *v2) {
\end{verbatim}
\subsubsection{\texttt{sum\_v}}
-\label{sec:org035a547}
+\label{sec:orgde8ccf4}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{sum\_v}
@@ -359,7 +360,7 @@ double sum_v(Array_double *v) {
\subsubsection{\texttt{scale\_v}}
-\label{sec:org12b0853}
+\label{sec:orgb6465fa}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{scale\_v}
@@ -378,7 +379,7 @@ Array_double *scale_v(Array_double *v, double m) {
\end{verbatim}
\subsubsection{\texttt{free\_vector}}
-\label{sec:org70ba90c}
+\label{sec:org38c1352}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{free\_vector}
@@ -395,8 +396,47 @@ void free_vector(Array_double *v) {
}
\end{verbatim}
+\subsubsection{\texttt{add\_element}}
+\label{sec:org9fa4fc9}
+\begin{itemize}
+\item Author: Elizabeth Hunt
+\item Name: \texttt{add\_element}
+\item Location: \texttt{src/vector.c}
+\item Input: a pointer to an \texttt{Array\_double}
+\item Output: a new \texttt{Array\_double} with element \texttt{x} appended.
+\end{itemize}
+
+\begin{verbatim}
+Array_double *add_element(Array_double *v, double x) {
+ Array_double *pushed = InitArrayWithSize(double, v->size + 1, 0.0);
+ for (size_t i = 0; i < v->size; ++i)
+ pushed->data[i] = v->data[i];
+ pushed->data[v->size] = x;
+ return pushed;
+}
+\end{verbatim}
+
+\subsubsection{\texttt{slice\_element}}
+\label{sec:orga743fd5}
+\begin{itemize}
+\item Author: Elizabeth Hunt
+\item Name: \texttt{slice\_element}
+\item Location: \texttt{src/vector.c}
+\item Input: a pointer to an \texttt{Array\_double}
+\item Output: a new \texttt{Array\_double} with element \texttt{x} sliced.
+\end{itemize}
+
+\begin{verbatim}
+Array_double *slice_element(Array_double *v, size_t x) {
+ Array_double *sliced = InitArrayWithSize(double, v->size - 1, 0.0);
+ for (size_t i = 0; i < v->size - 1; ++i)
+ sliced->data[i] = i >= x ? v->data[i + 1] : v->data[i];
+ return sliced;
+}
+\end{verbatim}
+
\subsubsection{\texttt{copy\_vector}}
-\label{sec:org57afc74}
+\label{sec:org8918aa7}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{copy\_vector}
@@ -416,7 +456,7 @@ Array_double *copy_vector(Array_double *v) {
\end{verbatim}
\subsubsection{\texttt{format\_vector\_into}}
-\label{sec:orgc346c3c}
+\label{sec:org744df1b}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{format\_vector\_into}
@@ -446,9 +486,9 @@ void format_vector_into(Array_double *v, char *s) {
\end{verbatim}
\subsection{Matrix Routines}
-\label{sec:org3b053ab}
+\label{sec:orge1c8a5a}
\subsubsection{\texttt{lu\_decomp}}
-\label{sec:org5553968}
+\label{sec:org19cc6a1}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{lu\_decomp}
@@ -457,7 +497,7 @@ void format_vector_into(Array_double *v, char *s) {
matrix \(L\), \(U\), respectively such that \(LU = m\).
\item Output: a pointer to the location in memory in which two \texttt{Matrix\_double}'s reside: the first
representing \(L\), the second, \(U\).
-\item Errors: Exits and throws a status code of \texttt{-1} when encountering a matrix that cannot be
+\item Errors: Fails assertions when encountering a matrix that cannot be
decomposed
\end{itemize}
@@ -468,15 +508,14 @@ Matrix_double **lu_decomp(Matrix_double *m) {
Matrix_double *u = copy_matrix(m);
Matrix_double *l_empt = InitMatrixWithSize(double, m->rows, m->cols, 0.0);
Matrix_double *l = put_identity_diagonal(l_empt);
- free(l_empt);
-
+ free_matrix(l_empt);
Matrix_double **u_l = malloc(sizeof(Matrix_double *) * 2);
for (size_t y = 0; y < m->rows; y++) {
if (u->data[y]->data[y] == 0) {
printf("ERROR: a pivot is zero in given matrix\n");
- exit(-1);
+ assert(false);
}
}
@@ -487,7 +526,7 @@ Matrix_double **lu_decomp(Matrix_double *m) {
if (denom == 0) {
printf("ERROR: non-factorable matrix\n");
- exit(-1);
+ assert(false);
}
double factor = -(u->data[y]->data[x] / denom);
@@ -509,7 +548,7 @@ Matrix_double **lu_decomp(Matrix_double *m) {
}
\end{verbatim}
\subsubsection{\texttt{bsubst}}
-\label{sec:org253efdc}
+\label{sec:org786580f}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{bsubst}
@@ -534,7 +573,7 @@ Array_double *bsubst(Matrix_double *u, Array_double *b) {
}
\end{verbatim}
\subsubsection{\texttt{fsubst}}
-\label{sec:orge0c7bc6}
+\label{sec:org1d422c6}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{fsubst}
@@ -561,8 +600,8 @@ Array_double *fsubst(Matrix_double *l, Array_double *b) {
}
\end{verbatim}
-\subsubsection{\texttt{solve\_matrix}}
-\label{sec:orgbcd445a}
+\subsubsection{\texttt{solve\_matrix\_lu\_bsubst}}
+\label{sec:orgbf1dbcb}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@@ -577,7 +616,7 @@ Here we make use of forward substitution to first solve \(Ly = b\) given \(L\) a
Then, \(LUx = b\), thus \(x\) is a solution.
\begin{verbatim}
-Array_double *solve_matrix(Matrix_double *m, Array_double *b) {
+Array_double *solve_matrix_lu_bsubst(Matrix_double *m, Array_double *b) {
assert(b->size == m->rows);
assert(m->rows == m->cols);
@@ -592,13 +631,105 @@ Array_double *solve_matrix(Matrix_double *m, Array_double *b) {
free_matrix(u);
free_matrix(l);
+ free(u_l);
return x;
}
\end{verbatim}
+\subsubsection{\texttt{gaussian\_elimination}}
+\label{sec:orgc3ceb7b}
+\begin{itemize}
+\item Author: Elizabeth Hunt
+\item Location: \texttt{src/matrix.c}
+\item Input: a pointer to a \texttt{Matrix\_double} \(m\)
+\item Output: a pointer to a copy of \(m\) in reduced echelon form
+\end{itemize}
+
+This works by finding the row with a maximum value in the column \(k\). Then, it uses that as a pivot, and
+applying reduction to all other rows. The general idea is available at \url{https://en.wikipedia.org/wiki/Gaussian\_elimination}.
+
+\begin{verbatim}
+Matrix_double *gaussian_elimination(Matrix_double *m) {
+ uint64_t h = 0;
+ uint64_t k = 0;
+
+ Matrix_double *m_cp = copy_matrix(m);
+
+ while (h < m_cp->rows && k < m_cp->cols) {
+ uint64_t max_row = 0;
+ double total_max = 0.0;
+
+ for (uint64_t row = h; row < m_cp->rows; row++) {
+ double this_max = c_max(fabs(m_cp->data[row]->data[k]), total_max);
+ if (c_max(this_max, total_max) == this_max) {
+ max_row = row;
+ }
+ }
+
+ if (max_row == 0) {
+ k++;
+ continue;
+ }
+
+ Array_double *swp = m_cp->data[max_row];
+ m_cp->data[max_row] = m_cp->data[h];
+ m_cp->data[h] = swp;
+
+ for (uint64_t row = h + 1; row < m_cp->rows; row++) {
+ double factor = m_cp->data[row]->data[k] / m_cp->data[h]->data[k];
+ m_cp->data[row]->data[k] = 0.0;
+
+ for (uint64_t col = k + 1; col < m_cp->cols; col++) {
+ m_cp->data[row]->data[col] -= m_cp->data[h]->data[col] * factor;
+ }
+ }
+
+ h++;
+ k++;
+ }
+
+ return m_cp;
+}
+\end{verbatim}
+
+\subsubsection{\texttt{solve\_matrix\_gaussian}}
+\label{sec:orgb8fc210}
+\begin{itemize}
+\item Author: Elizabeth Hunt
+\item Location: \texttt{src/matrix.c}
+\item Input: a pointer to a \texttt{Matrix\_double} \(m\) and a target \texttt{Array\_double} \(b\)
+\item Output: a pointer to a vector \(x\) being the solution to the equation \(mx = b\)
+\end{itemize}
+
+We first perform \texttt{gaussian\_elimination} after augmenting \(m\) and \(b\). Then, as \(m\) is in reduced echelon form, it's an upper
+triangular matrix, so we can perform back substitution to compute \(x\).
+
+\begin{verbatim}
+Array_double *solve_matrix_gaussian(Matrix_double *m, Array_double *b) {
+ assert(b->size == m->rows);
+ assert(m->rows == m->cols);
+
+ Matrix_double *m_augment_b = add_column(m, b);
+ Matrix_double *eliminated = gaussian_elimination(m_augment_b);
+
+ Array_double *b_gauss = col_v(eliminated, m->cols);
+ Matrix_double *u = slice_column(eliminated, m->rows);
+
+ Array_double *solution = bsubst(u, b_gauss);
+
+ free_matrix(m_augment_b);
+ free_matrix(eliminated);
+ free_matrix(u);
+ free_vector(b_gauss);
+
+ return solution;
+}
+\end{verbatim}
+
+
\subsubsection{\texttt{m\_dot\_v}}
-\label{sec:orga9b1f68}
+\label{sec:org304f5e5}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@@ -620,7 +751,7 @@ Array_double *m_dot_v(Matrix_double *m, Array_double *v) {
\end{verbatim}
\subsubsection{\texttt{put\_identity\_diagonal}}
-\label{sec:org33ead5e}
+\label{sec:orga145f39}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@@ -638,8 +769,56 @@ Matrix_double *put_identity_diagonal(Matrix_double *m) {
}
\end{verbatim}
+\subsubsection{\texttt{slice\_column}}
+\label{sec:org1ea6d1a}
+\begin{itemize}
+\item Author: Elizabeth Hunt
+\item Location: \texttt{src/matrix.c}
+\item Input: a pointer to a \texttt{Matrix\_double}
+\item Output: a pointer to a copy of the given \texttt{Matrix\_double} with column at \texttt{x} sliced
+\end{itemize}
+
+\begin{verbatim}
+Matrix_double *slice_column(Matrix_double *m, size_t x) {
+ Matrix_double *sliced = copy_matrix(m);
+
+ for (size_t row = 0; row < m->rows; row++) {
+ Array_double *old_row = sliced->data[row];
+ sliced->data[row] = slice_element(old_row, x);
+ free_vector(old_row);
+ }
+ sliced->cols--;
+
+ return sliced;
+}
+\end{verbatim}
+
+\subsubsection{\texttt{add\_column}}
+\label{sec:org733cc61}
+\begin{itemize}
+\item Author: Elizabet Hunt
+\item Location: \texttt{src/matrix.c}
+\item Input: a pointer to a \texttt{Matrix\_double} and a new vector representing the appended column \texttt{x}
+\item Output: a pointer to a copy of the given \texttt{Matrix\_double} with a new column \texttt{x}
+\end{itemize}
+
+\begin{verbatim}
+Matrix_double *add_column(Matrix_double *m, Array_double *v) {
+ Matrix_double *pushed = copy_matrix(m);
+
+ for (size_t row = 0; row < m->rows; row++) {
+ Array_double *old_row = pushed->data[row];
+ pushed->data[row] = add_element(old_row, v->data[row]);
+ free_vector(old_row);
+ }
+
+ pushed->cols++;
+ return pushed;
+}
+\end{verbatim}
+
\subsubsection{\texttt{copy\_matrix}}
-\label{sec:org34b3f5b}
+\label{sec:orge8936ce}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@@ -659,7 +838,7 @@ Matrix_double *copy_matrix(Matrix_double *m) {
\end{verbatim}
\subsubsection{\texttt{free\_matrix}}
-\label{sec:org9c91101}
+\label{sec:orgf7b674e}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{src/matrix.c}
@@ -678,7 +857,7 @@ void free_matrix(Matrix_double *m) {
\end{verbatim}
\subsubsection{\texttt{format\_matrix\_into}}
-\label{sec:org51f3e27}
+\label{sec:org22902bd}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{format\_matrix\_into}
@@ -705,9 +884,9 @@ void format_matrix_into(Matrix_double *m, char *s) {
}
\end{verbatim}
\subsection{Root Finding Methods}
-\label{sec:org0e83d47}
+\label{sec:org6c22e6c}
\subsubsection{\texttt{find\_ivt\_range}}
-\label{sec:org3e4e34e}
+\label{sec:org43ba5e5}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{find\_ivt\_range}
@@ -737,7 +916,7 @@ double *find_ivt_range(double (*f)(double), double start_x, double delta,
}
\end{verbatim}
\subsubsection{\texttt{bisect\_find\_root}}
-\label{sec:org48f0967}
+\label{sec:orgf8a3f0e}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name(s): \texttt{bisect\_find\_root}
@@ -765,7 +944,7 @@ double bisect_find_root(double (*f)(double), double a, double b,
}
\end{verbatim}
\subsubsection{\texttt{bisect\_find\_root\_with\_error\_assumption}}
-\label{sec:org15e3c2d}
+\label{sec:orgeb72b17}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{bisect\_find\_root\_with\_error\_assumption}
@@ -789,9 +968,9 @@ double bisect_find_root_with_error_assumption(double (*f)(double), double a,
\end{verbatim}
\subsection{Linear Routines}
-\label{sec:org98cb54b}
+\label{sec:org4e14ee5}
\subsubsection{\texttt{least\_squares\_lin\_reg}}
-\label{sec:org0c0c5d7}
+\label{sec:orge0ed136}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Name: \texttt{least\_squares\_lin\_reg}
@@ -821,12 +1000,12 @@ Line *least_squares_lin_reg(Array_double *x, Array_double *y) {
}
\end{verbatim}
\subsection{Appendix / Miscellaneous}
-\label{sec:orge34af18}
+\label{sec:org0130d70}
\subsubsection{Data Types}
-\label{sec:org0f2f877}
+\label{sec:org8aa1c01}
\begin{enumerate}
\item \texttt{Line}
-\label{sec:org3f27166}
+\label{sec:org596b0e7}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/types.h}
@@ -839,7 +1018,7 @@ typedef struct Line {
} Line;
\end{verbatim}
\item The \texttt{Array\_<type>} and \texttt{Matrix\_<type>}
-\label{sec:org83fc1f3}
+\label{sec:org9d1c7c3}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/types.h}
@@ -871,10 +1050,10 @@ typedef struct {
\end{enumerate}
\subsubsection{Macros}
-\label{sec:org2bf9bf0}
+\label{sec:orgb835bfa}
\begin{enumerate}
\item \texttt{c\_max} and \texttt{c\_min}
-\label{sec:orgcaa569e}
+\label{sec:org9ca763b}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/macros.h}
@@ -888,7 +1067,7 @@ typedef struct {
\end{verbatim}
\item \texttt{InitArray}
-\label{sec:org5805999}
+\label{sec:org3454dab}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/macros.h}
@@ -909,7 +1088,7 @@ typedef struct {
\end{verbatim}
\item \texttt{InitArrayWithSize}
-\label{sec:org264d6b7}
+\label{sec:orga4ec165}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/macros.h}
@@ -930,7 +1109,7 @@ typedef struct {
\end{verbatim}
\item \texttt{InitMatrixWithSize}
-\label{sec:org310d41a}
+\label{sec:org0748f30}
\begin{itemize}
\item Author: Elizabeth Hunt
\item Location: \texttt{inc/macros.h}
diff --git a/homeworks/hw-5.org b/homeworks/hw-5.org
index d650375..a2339f9 100644
--- a/homeworks/hw-5.org
+++ b/homeworks/hw-5.org
@@ -19,7 +19,7 @@ Unless the following are met, the resulting solution will be garbage.
1. The matrix $U$ must be not be singular.
2. $U$ must be square (or it will fail the ~assert~).
3. The system created by $Ux = b$ must be consistent.
-4. $U$ is in (obviously) upper-triangular form.
+4. $U$ is (quite obviously) in upper-triangular form.
Thus, the actual calculation performing the $LU$ decomposition
(in ~lu_decomp~) does a sanity
diff --git a/homeworks/hw-5.pdf b/homeworks/hw-5.pdf
index ce43787..a7773bc 100644
--- a/homeworks/hw-5.pdf
+++ b/homeworks/hw-5.pdf
Binary files differ
diff --git a/homeworks/hw-5.tex b/homeworks/hw-5.tex
index 8b9d24b..98cca2e 100644
--- a/homeworks/hw-5.tex
+++ b/homeworks/hw-5.tex
@@ -1,4 +1,4 @@
-% Created 2023-10-30 Mon 19:05
+% Created 2023-11-01 Wed 20:49
% Intended LaTeX compiler: pdflatex
\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
@@ -29,7 +29,7 @@
\setlength\parindent{0pt}
\section{Question One}
-\label{sec:org88abf18}
+\label{sec:org4e80298}
See LIZFCM \(\rightarrow\) Matrix Routines \(\rightarrow\) \texttt{lu decomp} \& \texttt{bsubst}.
The test \texttt{UTEST(matrix, lu\_decomp)} is a unit test for the \texttt{lu\_decomp} routine,
@@ -39,14 +39,14 @@ and \texttt{UTEST(matrix, bsubst)} verifies back substitution on an upper triang
Both can be found in \texttt{tests/matrix.t.c}.
\section{Question Two}
-\label{sec:org098a7f1}
+\label{sec:orga73d05c}
Unless the following are met, the resulting solution will be garbage.
\begin{enumerate}
\item The matrix \(U\) must be not be singular.
\item \(U\) must be square (or it will fail the \texttt{assert}).
\item The system created by \(Ux = b\) must be consistent.
-\item \(U\) is in (obviously) upper-triangular form.
+\item \(U\) is (quite obviously) in upper-triangular form.
\end{enumerate}
Thus, the actual calculation performing the \(LU\) decomposition
@@ -55,41 +55,41 @@ check for 1-3 will fail an assert, should a point along the diagonal (pivot) be
zero, or the matrix be non-factorable.
\section{Question Three}
-\label{sec:org40d5983}
+\label{sec:org35163c5}
See LIZFCM \(\rightarrow\) Matrix Routines \(\rightarrow\) \texttt{fsubst}.
\texttt{UTEST(matrix, fsubst)} verifies forward substitution on a lower triangular 3 \texttimes{} 3
matrix with a known solution that can be verified manually.
\section{Question Four}
-\label{sec:orgf7d23bb}
+\label{sec:org79d9061}
See LIZFCM \(\rightarrow\) Matrix Routines \(\rightarrow\) \texttt{gaussian\_elimination} and \texttt{solve\_gaussian\_elimination}.
\section{Question Five}
-\label{sec:org54e966c}
+\label{sec:orgc6ac464}
See LIZFCM \(\rightarrow\) Matrix Routines \(\rightarrow\) \texttt{m\_dot\_v}, and the \texttt{UTEST(matrix, m\_dot\_v)} in
\texttt{tests/matrix.t.c}.
\section{Question Six}
-\label{sec:org413b527}
+\label{sec:org66fedab}
See \texttt{UTEST(matrix, solve\_gaussian\_elimination)} in \texttt{tests/matrix.t.c}, which generates a diagonally dominant 10 \texttimes{} 10 matrix
and shows that the solution is consistent with the initial matrix, according to the steps given. Then,
we do a dot product between each row of the diagonally dominant matrix and the solution vector to ensure
it is near equivalent to the input vector.
\section{Question Seven}
-\label{sec:orgd3d7443}
+\label{sec:org6897ff2}
See \texttt{UTEST(matrix, solve\_matrix\_lu\_bsubst)} which does the same test in Question Six with the solution according to
\texttt{solve\_matrix\_lu\_bsubst} as shown in the Software Manual.
\section{Question Eight}
-\label{sec:orgf8ac9bf}
+\label{sec:org5d529dd}
No, since the time complexity for Gaussian Elimination is always less than that of the LU factorization solution by \(O(n^2)\) operations
(in LU factorization we perform both backwards and forwards substitutions proceeding the LU decomp, in Gaussian Elimination we only need
back substitution).
\section{Question Nine, Ten}
-\label{sec:orgb270171}
+\label{sec:org0fb8e09}
See LIZFCM Software manual and shared library in \texttt{dist} after compiling.
\end{document} \ No newline at end of file
diff --git a/notes/Nov-3.org b/notes/Nov-3.org
new file mode 100644
index 0000000..5a65d2a
--- /dev/null
+++ b/notes/Nov-3.org
@@ -0,0 +1,62 @@
+* eigenvalues \rightarrow power method
+
+we iterate on the x_{k+1} = A x_k
+
+y = Av_0
+v_1 = \frac{1}{|| y ||} (y)
+\lambda_0 = v_0^T A v_0 = v_0^T y
+
+Find the largest eigenvalue;
+
+#+BEGIN_SRC c
+ while (error > tol && iter < max_iter) {
+ v_1 = (1 / magnitude(y)) * y;
+ w = m_dot_v(a, v_1);
+ lambda_1 = v_dot_v(transpose(v_1), w);
+ error = abs(lambda_1 - lambda_0);
+ iter++;
+ lambda_0 = lambda_1;
+ y = v_1;
+ }
+
+ return [lambda_1, error];
+#+END_SRC
+
+Find the smallest eigenvalue:
+
+** We know:
+If \lambda_1 is the largest eigenvalue of $A$ then \frac{1}{\lambda_1} is the smallest eigenvalue of $A^{-1}$.
+
+If \lambda_n is the smallest eigenvalue of $A$ then \frac{1}{\lambda_n} is the largest eigenvalue of $A^{-1}$.
+*** However, calculating $A^{-1}$ is inefficient
+So, transform $w = A^{-1} v_1 \Rightarrow$ Solve $Aw = v_1$ with LU or GE (line 3 of above snippet).
+
+And, transform $y = A^{-1} v_0 \Rightarrow$ Solve $Ay = v_0$ with LU or GE.
+
+** Conclusions
+
+We have the means to compute the approximations of \lambda_1 and \lambda_n.
+
+(\lambda_1 \rightarrow power method)
+
+(\lambda_n \rightarrow inverse power method)
+
+* Eigenvalue Shifting
+
+If (\lambda, v) is an eigen pair, (v \neq 0)
+
+Av = \lambdav
+
+Thus for any \mu \in R
+
+(Av - \mu I v) = (A - \mu I)v = \lambda v - \mu I v
+ = (\lambda - \mu)v
+ \Rightarrow \lambda - \mu is an eigenvalue of (A - \mu I)
+
+(A - \mu I)v = (\lambda - \mu)v
+
+Idea is to choose \mu close to our eigenvalue. We can then inverse iterate to
+construct an approximation of \lambda - \mu and then add \mu back to get \lambda.
+
+v_0 = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n
+A v_0 = a_1 (\lambda_1 v_1) + \cdots