summaryrefslogtreecommitdiff
path: root/doc/software_manual.org
diff options
context:
space:
mode:
Diffstat (limited to 'doc/software_manual.org')
-rw-r--r--doc/software_manual.org37
1 files changed, 37 insertions, 0 deletions
diff --git a/doc/software_manual.org b/doc/software_manual.org
index d6c7331..e12032d 100644
--- a/doc/software_manual.org
+++ b/doc/software_manual.org
@@ -1096,7 +1096,44 @@ double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
}
#+END_SRC
+*** ~partition_find_eigenvalues~
++ Author: Elizabeth Hunt
++ Name: ~partition_find_eigenvalues~
++ Location: ~src/eigen.c~
++ Input: a pointer to an invertible matrix ~m~, a matrix whose rows correspond to initial
+ eigenvector guesses at each "partition" which is computed from a uniform distribution
+ between the number of rows this "guess matrix" has and the distance between the least
+ dominant eigenvalue and the most dominant. Additionally, a ~max_iterations~ and a ~tolerance~
+ that act as stop conditions.
++ Output: a vector of ~doubles~ corresponding to the "nearest" eigenvalue at the midpoint of
+ each partition, via the given guess of that partition.
+#+BEGIN_SRC c
+Array_double *partition_find_eigenvalues(Matrix_double *m,
+ Matrix_double *guesses,
+ double tolerance,
+ size_t max_iterations) {
+ assert(guesses->rows >=
+ 2); // we need at least, the most and least dominant eigenvalues
+
+ double end = dominant_eigenvalue(m, guesses->data[guesses->rows - 1],
+ tolerance, max_iterations);
+ double begin =
+ least_dominant_eigenvalue(m, guesses->data[0], tolerance, max_iterations);
+
+ double delta = (end - begin) / guesses->rows;
+ Array_double *eigenvalues = InitArrayWithSize(double, guesses->rows, 0.0);
+ for (size_t i = 0; i < guesses->rows; i++) {
+ double box_midpoint = ((delta * i) + (delta * (i + 1))) / 2;
+
+ double nearest_eigenvalue = shift_inverse_power_eigenvalue(
+ m, guesses->data[i], box_midpoint, tolerance, max_iterations);
+
+ eigenvalues->data[i] = nearest_eigenvalue;
+ }
+ return eigenvalues;
+}
+#+END_SRC
*** ~leslie_matrix~
+ Author: Elizabeth Hunt
+ Name: ~leslie_matrix~