1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
#+TITLE: HW 03
#+AUTHOR: Elizabeth Hunt
#+STARTUP: entitiespretty fold inlineimages
#+LATEX_HEADER: \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry}
#+LATEX: \setlength\parindent{0pt}
#+OPTIONS: toc:nil
* Question One
** Three Terms
\begin{align*}
Si_3(x) &= \int_0^x \frac{s - \frac{s^3}{3!} + \frac{s^5}{5!}}{s} dx \\
&= x - \frac{x^3}{(3!)(3)} + \frac{x^5}{(5!)(5)}
\end{align*}
** Five Terms
\begin{align*}
Si_3(x) &= \int_0^x \frac{s - \frac{s^3}{3!} + \frac{s^5}{5!} - \frac{s^7}{7!} + \frac{s^9}{9!}}{s} dx \\
&= x - \frac{x^3}{(3!)(3)} + \frac{x^5}{(5!)(5)} - \frac{x^7}{(7!)(7)} + \frac{s^9}{(9!)(9)}
\end{align*}
** Ten Terms
\begin{align*}
Si_{10}(x) &= \int_0^x \frac{s - \frac{s^3}{3!} + \frac{s^5}{5!} - \frac{s^7}{7!} + \frac{s^9}{9!} - \frac{s^{11}}{11!} + \frac{s^{13}}{13!} - \frac{s^{15}}{15!} + \frac{s^{17}}{17!} - \frac{s^{19}}{19!}}{s} ds \\
&= x - \frac{x^3}{(3!)(3)} + \frac{x^5}{(5!)(5)} - \frac{x^7}{(7!)(7)} + \frac{s^9}{(9!)(9)} - \frac{s^{11}}{(11!)(11)} + \frac{s^{13}}{(13!)(13)} - \frac{s^{15}}{(15!)(15)} \\
&+ \frac{s^{17}}{(17!)(17)} - \frac{s^{19}}{(19!)(19)}
\end{align*}
* Question Three
For the second term in the difference quotient, we can expand the taylor series centered at x=a:
\begin{equation*}
f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots \\
\end{equation*}
Which we substitute into the difference quotient:
\begin{equation*}
\frac{f(a) - f(a - h)}{h} = \frac{f(a) - (f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots)}{h}
\end{equation*}
And subs. $x=a-h$:
\begin{align*}
\frac{f(a) - (f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots)}{h} &= -f'(a)(-1) + -\frac{1}{2}f''(a)h \\
&= f'(a) - \frac{1}{2}f''(a)h + \cdots \\
\end{align*}
Which we now plug into the initial $e_{\text{abs}}$:
\begin{align*}
e_{\text{abs}} &= |f'(a) - \frac{f(a) - f(a - h)}{h}| \\
&= |f'(a) - (f'(a) + -\frac{f''(a)}{2}h + \cdots)| \\
&= |- \frac{1}{2}f''(a)h + \cdots | \\
\end{align*}
With the Taylor Remainder theorem we can absorb the series following the second term:
\begin{equation*}
e_{\text{abs}} = |- \frac{1}{2}f''(a)h + \cdots | = |\frac{1}{2}f''(\xi)h| \leq Ch
\end{equation*}
Thus our error is bounded linearly with $h$.
* Question Four
For the first term in the difference quotient we know, from the given notes,
\begin{equation*}
f(a+h) = f(a) + f'(a)h + \frac{1}{2}f''(a)h^2 + \frac{1}{6}f'''(a)(h^3)
\end{equation*}
And from some of the work in Question Three,
\begin{equation*}
f(a - h) = f(a) + f'(a)(-h) + \frac{1}{2}f''(a)(-h)^2 + \frac{1}{6}f'''(a)(-h^3)
\end{equation*}
We can substitute immediately into $e_{\text{abs}} = |f'(a) - (\frac{f(a+h) - f(a-h)}{2h})|$:
\begin{align*}
e_{\text{abs}} &= |f'(a) - \frac{1}{2h}((f(a) + f'(a)h + \frac{1}{2}f''(a)h^2 + \cdots) - (f(a) - f'(a)h + \frac{1}{2}f''(a)h^2 + \cdots))| \\
&= |f'(a) - \frac{1}{2h}(2f'(a)h + \frac{1}{6}f'''(a)h^3 + \cdots)| \\
&= |f'(a) - f'(a) - \frac{1}{12}f'''(a)h^2 + \cdots| \\
&= |-\frac{1}{12}f'''(a)h^2 + \cdots|
\end{align*}
Finally, with the Taylor Remainder theorem we can absorb the series following the third term:
\begin{equation*}
e_{\text{abs}} = |-\frac{1}{12}f'''(\xi)h^2| = |\frac{1}{12}f'''(\xi)h^2| \leq Ch^2
\end{equation*}
Meaning that as $h$ scales linearly, our error is bounded by $h^2$ as opposed to linearly as in Question Three.
* Question Six
** A
#+BEGIN_SRC lisp
(load "../lizfcm.asd")
(ql:quickload :lizfcm)
(defun f (x)
(/ (- x 1) (+ x 1)))
(defun fprime (x)
(/ 2 (expt (+ x 1) 2)))
(let ((domain-values (loop for a from 0 to 2
append
(loop for i from 0 to 9
for h = (/ 1.0 (expt 2 i))
collect (list a h)))))
(lizfcm.utils:table (:headers '("a" "h" "f'" "\\approx f'" "e_{\\text{abs}}")
:domain-order (a h)
:domain-values domain-values)
(fprime a)
(lizfcm.approx:fwd-derivative-at 'f a h)
(abs (- (fprime a)
(lizfcm.approx:fwd-derivative-at 'f a h)))))
#+END_SRC
#+RESULTS:
| a | h | f' | \approx f' | e_{\text{abs}} |
| 0 | 1.0 | 2 | 1.0 | 1.0 |
| 0 | 0.5 | 2 | 1.3333333 | 0.66666675 |
| 0 | 0.25 | 2 | 1.5999999 | 0.4000001 |
| 0 | 0.125 | 2 | 1.7777777 | 0.22222233 |
| 0 | 0.0625 | 2 | 1.8823528 | 0.11764717 |
| 0 | 0.03125 | 2 | 1.939394 | 0.060606003 |
| 0 | 0.015625 | 2 | 1.9692307 | 0.030769348 |
| 0 | 0.0078125 | 2 | 1.9844971 | 0.01550293 |
| 0 | 0.00390625 | 2 | 1.992218 | 0.0077819824 |
| 0 | 0.001953125 | 2 | 1.9960938 | 0.00390625 |
| 1 | 1.0 | 1/2 | 0.33333334 | 0.16666666 |
| 1 | 0.5 | 1/2 | 0.4 | 0.099999994 |
| 1 | 0.25 | 1/2 | 0.44444445 | 0.055555552 |
| 1 | 0.125 | 1/2 | 0.47058824 | 0.029411763 |
| 1 | 0.0625 | 1/2 | 0.4848485 | 0.015151501 |
| 1 | 0.03125 | 1/2 | 0.4923077 | 0.0076923072 |
| 1 | 0.015625 | 1/2 | 0.49612403 | 0.0038759708 |
| 1 | 0.0078125 | 1/2 | 0.49805447 | 0.0019455254 |
| 1 | 0.00390625 | 1/2 | 0.49902534 | 0.00097465515 |
| 1 | 0.001953125 | 1/2 | 0.4995122 | 0.0004878044 |
| 2 | 1.0 | 2/9 | 0.16666666 | 0.055555567 |
| 2 | 0.5 | 2/9 | 0.19047618 | 0.031746045 |
| 2 | 0.25 | 2/9 | 0.2051282 | 0.017094031 |
| 2 | 0.125 | 2/9 | 0.21333337 | 0.008888856 |
| 2 | 0.0625 | 2/9 | 0.21768713 | 0.004535094 |
| 2 | 0.03125 | 2/9 | 0.21993065 | 0.002291575 |
| 2 | 0.015625 | 2/9 | 0.22106934 | 0.0011528879 |
| 2 | 0.0078125 | 2/9 | 0.22164536 | 0.00057686865 |
| 2 | 0.00390625 | 2/9 | 0.22193146 | 0.00029076636 |
| 2 | 0.001953125 | 2/9 | 0.22207642 | 0.00014580786 |
* Question Nine
** C
#+BEGIN_SRC lisp
(load "../lizfcm.asd")
(ql:quickload :lizfcm)
(defun factorial (n)
(if (= n 0)
1
(* n (factorial (- n 1)))))
(defun taylor-term (n x)
(/ (* (expt (- 1) n)
(expt x (+ (* 2 n) 1)))
(* (factorial n)
(+ (* 2 n) 1))))
(defun f (x &optional (max-iterations 30))
(let ((sum 0.0))
(dotimes (n max-iterations)
(setq sum (+ sum (taylor-term n x))))
(* sum (/ 2 (sqrt pi)))))
(defun fprime (x)
(* (/ 2 (sqrt pi)) (exp (- 0 (* x x)))))
(let ((domain-values (loop for a from 0 to 1
append
(loop for i from 0 to 9
for h = (/ 1.0 (expt 2 i))
collect (list a h)))))
(lizfcm.utils:table (:headers '("a" "h" "f'" "\\approx f'" "e_{\\text{abs}}")
:domain-order (a h)
:domain-values domain-values)
(fprime a)
(lizfcm.approx:central-derivative-at 'f a h)
(abs (- (fprime a)
(lizfcm.approx:central-derivative-at 'f a h)))))
#+END_SRC
| a | h | f' | \approx f' | e_{\text{abs}} |
| 0 | 1.0 | 1.1283791670955126d0 | 0.8427006725464232d0 | 0.28567849454908933d0 |
| 0 | 0.5 | 1.1283791670955126d0 | 1.0409997446922075d0 | 0.0873794224033051d0 |
| 0 | 0.25 | 1.1283791670955126d0 | 1.1053055663206806d0 | 0.023073600774832004d0 |
| 0 | 0.125 | 1.1283791670955126d0 | 1.122529655394656d0 | 0.005849511700856569d0 |
| 0 | 0.0625 | 1.1283791670955126d0 | 1.1269116944798618d0 | 0.0014674726156507223d0 |
| 0 | 0.03125 | 1.1283791670955126d0 | 1.1280120131008824d0 | 3.6715399463016496d-4 |
| 0 | 0.015625 | 1.1283791670955126d0 | 1.1282873617826952d0 | 9.180531281738347d-5 |
| 0 | 0.0078125 | 1.1283791670955126d0 | 1.128356232581468d0 | 2.293451404455915d-5 |
| 0 | 0.00390625 | 1.1283791670955126d0 | 1.1283734502811613d0 | 5.71681435124205d-6 |
| 0 | 0.001953125 | 1.1283791670955126d0 | 1.1283777547060847d0 | 1.4123894278572635d-6 |
| 1 | 1.0 | 0.41510750774498784d0 | 0.4976611317561498d0 | 0.08255362401116195d0 |
| 1 | 0.5 | 0.41510750774498784d0 | 0.44560523266293384d0 | 0.030497724917946d0 |
| 1 | 0.25 | 0.41510750774498784d0 | 0.4234889628937013d0 | 0.008381455148713468d0 |
| 1 | 0.125 | 0.41510750774498784d0 | 0.41725265825950153d0 | 0.002145150514513694d0 |
| 1 | 0.0625 | 0.41510750774498784d0 | 0.41564710776310854d0 | 5.396000181207006d-4 |
| 1 | 0.03125 | 0.41510750774498784d0 | 0.4152414157140871d0 | 1.3390796909928948d-4 |
| 1 | 0.015625 | 0.41510750774498784d0 | 0.41514241394084905d0 | 3.490619586121735d-5 |
| 1 | 0.0078125 | 0.41510750774498784d0 | 0.41510582632900395d0 | 1.6814159838896003d-6 |
| 1 | 0.00390625 | 0.41510750774498784d0 | 0.415092913054238d0 | 1.4594690749825112d-5 |
| 1 | 0.001953125 | 0.41510750774498784d0 | 0.4150670865046777d0 | 4.0421240310117845d-5 |
* Question Twelve
First we'll place a bound on $h$; looking at a graph of $f$ it's pretty obvious from the asymptotes that we don't want to go much further than $|h| = 2 - \frac{pi}{2}$.
Following similar reasoning as Question Four, we can determine an optimal $h$ by computing $e_{\text{abs}}$ for the central difference, but now including a roundoff error for each time we run $f$
such that $|f_{\text{machine}}(x) - f(x)| \le \epsilon_{\text{dblprec}}$ (we'll use double precision numbers, from HW 2 we know $\epsilon_{\text{dblprec}} \approx 2.22045 (10^{-16})$).
We'll just assume $|f_{\text{machine}}(x) - f(x)| = \epsilon_{\text{dblprec}}$ so our new difference quotient becomes:
\begin{align*}
e_{\text{abs}} &= |f'(a) - (\frac{f(a+h) - f(a-h) + 2\epsilon_{\text{dblprec}}}{2h})| \\
&= |\frac{1}{12}f'''(\xi)h^2 + \frac{\epsilon_{\text{dblprec}}}{h}|
\end{align*}
Because we bounded our $|h| = 2 - \frac{pi}{2}$ we'll find the maximum value of $f'''$ between $a - (2 - \frac{\pi}{2})$ and $a - (2 - \frac{\pi}{3})$. Using [[https://www.desmos.com/calculator/gen1zpohh2][desmos]] I found this to be -2.
Thus, $e_{\text{abs}} \leq \frac{1}{6}h^2 + \frac{\epsilon_{\text{dblprec}}}{h}$. Finding the derivative:
\begin{equation*}
e' = \frac{1}{3}h - \frac{\epsilon_{\text{dblprec}}}{h^2}
\end{equation*}
And solving at $e' = 0$:
\begin{equation*}
\frac{1}{3}h = \frac{\epsilon_{\text{dblprec}}}{h^2} \Rightarrow h^3 = 3\epsilon_{\text{dblprec}} \Rightarrow h = (3\epsilon_{\text{dblprec}})^{1/3}
\end{equation*}
Which is $\approx (3(2.22045 (10^{-16}))^{\frac{1}{3}} \approx 8.7335 10^{-6}$.
|