1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
#+TITLE: Homework 6
#+AUTHOR: Elizabeth Hunt
#+LATEX_HEADER: \notindent \notag \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry}
#+LATEX: \setlength\parindent{0pt}
#+OPTIONS: toc:nil
* Question One
For $g(x) = x + f(x)$ then we know $g'(x) = 1 + 2x - 5$ and thus $|g'(x)| \lt 1$ is only true
on the interval $(1.5, 2.5)$, and for $g(x) = x - f(x)$ then we know $g'(x) = 1 - (2x - 5)$
and thus $|g'(x)| < 1$ is only true on the interval $(2.5, 3.5)$.
Because we know the roots of $f$ are $2, 3$ ($f(x) = (x-2)(x-3)$) then we can only be
certain that $g(x) = x + f(x)$ will converge to the root $2$ if we pick an initial
guess between $(1.5, 2.5)$, and likewise for $g(x) = x - f(x)$, $3$:
#+BEGIN_SRC c
// tests/roots.t.c
UTEST(root, fixed_point_iteration_method) {
// x^2 - 5x + 6 = (x - 3)(x - 2)
double expect_x1 = 3.0;
double expect_x2 = 2.0;
double tolerance = 0.001;
uint64_t max_iterations = 10;
double x_0 = 1.55; // 1.5 < 1.55 < 2.5
// g1(x) = x + f(x)
double root1 =
fixed_point_iteration_method(&f2, &g1, x_0, tolerance, max_iterations);
EXPECT_NEAR(root1, expect_x2, tolerance);
// g2(x) = x - f(x)
x_0 = 3.4; // 2.5 < 3.4 < 3.5
double root2 =
fixed_point_iteration_method(&f2, &g2, x_0, tolerance, max_iterations);
EXPECT_NEAR(root2, expect_x1, tolerance);
}
#+END_SRC
And by this method passing in ~tests/roots.t.c~ we know they converged within ~tolerance~ before
10 iterations.
* Question Two
Yes, we showed that for $\epsilon = 1$ in Question One, we can converge upon a root in the range $(2.5, 3.5)$, and
when $\epsilon = -1$ we can converge upon a root in the range $(1.5, 2.5)$.
See the above unit tests in Question One for each $\epsilon$.
* Question Three
See ~test/roots.t.c -> UTEST(root, bisection_with_error_assumption)~
and the software manual entry ~bisect_find_root_with_error_assumption~.
* Question Four
See ~test/roots.t.c -> UTEST(root, fixed_point_newton_method)~
and the software manual entry ~fixed_point_newton_method~.
* Question Five
See ~test/roots.t.c -> UTEST(root, fixed_point_secant_method)~
and the software manual entry ~fixed_point_secant_method~.
* Question Six
See ~test/roots.t.c -> UTEST(root, fixed_point_bisection_secant_method)~
and the software manual entry ~fixed_point_bisection_secant_method~.
* Question Seven
The existance of ~test/roots.t.c~'s compilation into ~dist/lizfcm.test~ via ~make~
shows that the compiled ~lizfcm.a~ contains the root methods mentioned; a user
could link the library and use them, as we do in Question Eight.
* Question Eight
The given ODE $\frac{dP}{dt} = \alpha P - \beta P$ has a trivial solution by separation:
\begin{equation*}
P(t) = C e^{t(\alpha - \beta)}
\end{equation*}
And
\begin{equation*}
P_0 = P(0) = C e^0 = C
\end{equation*}
So $P(t) = P_0 e^{t(\alpha - \beta)}$.
We're trying to find $t$ such that $P(t) = P_\infty$, thus we're finding roots of $P(t) - P_\infty$.
The following code (in ~homeworks/hw_6_p_8.c~) produces this output:
\begin{verbatim}
$ gcc -I../inc/ -Wall hw_6_p_8.c ../lib/lizfcm.a -lm -o hw_6_p_8 && ./hw_6_p_8
a ~ 27.269515; P(27.269515) - P_infty = -0.000000
b ~ 40.957816; P(40.957816) - P_infty = -0.000000
c ~ 40.588827; P(40.588827) - P_infty = -0.000000
d ~ 483.611967; P(483.611967) - P_infty = -0.000000
e ~ 4.894274; P(4.894274) - P_infty = -0.000000
\end{verbatim}
#+BEGIN_SRC c
// compile & test w/
// \--> gcc -I../inc/ -Wall hw_6_p_8.c ../lib/lizfcm.a -lm -o hw_6_p_8
// \--> ./hw_6_p_8
#include "lizfcm.h"
#include <math.h>
#include <stdio.h>
double a(double t) {
double alpha = 0.1;
double beta = 0.001;
double p_0 = 2;
double p_infty = 29.75;
return p_0 * exp(t * (alpha - beta)) - p_infty;
}
double b(double t) {
double alpha = 0.1;
double beta = 0.001;
double p_0 = 2;
double p_infty = 115.35;
return p_0 * exp(t * (alpha - beta)) - p_infty;
}
double c(double t) {
double alpha = 0.1;
double beta = 0.0001;
double p_0 = 2;
double p_infty = 115.35;
return p_0 * exp(t * (alpha - beta)) - p_infty;
}
double d(double t) {
double alpha = 0.01;
double beta = 0.001;
double p_0 = 2;
double p_infty = 155.346;
return p_0 * exp(t * (alpha - beta)) - p_infty;
}
double e(double t) {
double alpha = 0.1;
double beta = 0.01;
double p_0 = 100;
double p_infty = 155.346;
return p_0 * exp(t * (alpha - beta)) - p_infty;
}
int main() {
uint64_t max_iterations = 1000;
double tolerance = 0.0000001;
Array_double *ivt_range = find_ivt_range(&a, -5.0, 3.0, 1000);
double approx_a = fixed_point_secant_bisection_method(
&a, ivt_range->data[0], ivt_range->data[1], tolerance, max_iterations);
free_vector(ivt_range);
ivt_range = find_ivt_range(&b, -5.0, 3.0, 1000);
double approx_b = fixed_point_secant_bisection_method(
&b, ivt_range->data[0], ivt_range->data[1], tolerance, max_iterations);
free_vector(ivt_range);
ivt_range = find_ivt_range(&c, -5.0, 3.0, 1000);
double approx_c = fixed_point_secant_bisection_method(
&c, ivt_range->data[0], ivt_range->data[1], tolerance, max_iterations);
free_vector(ivt_range);
ivt_range = find_ivt_range(&d, -5.0, 3.0, 1000);
double approx_d = fixed_point_secant_bisection_method(
&d, ivt_range->data[0], ivt_range->data[1], tolerance, max_iterations);
free_vector(ivt_range);
ivt_range = find_ivt_range(&e, -5.0, 3.0, 1000);
double approx_e = fixed_point_secant_bisection_method(
&e, ivt_range->data[0], ivt_range->data[1], tolerance, max_iterations);
printf("a ~ %f; P(%f) = %f\n", approx_a, approx_a, a(approx_a));
printf("b ~ %f; P(%f) = %f\n", approx_b, approx_b, b(approx_b));
printf("c ~ %f; P(%f) = %f\n", approx_c, approx_c, c(approx_c));
printf("d ~ %f; P(%f) = %f\n", approx_d, approx_d, d(approx_d));
printf("e ~ %f; P(%f) = %f\n", approx_e, approx_e, e(approx_e));
return 0;
}
#+END_SRC
|