summaryrefslogtreecommitdiff
path: root/homeworks/hw-8.tex
blob: 507468981517a4beae3dca172fb1000675eed17d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
% Created 2023-12-09 Sat 21:43
% Intended LaTeX compiler: pdflatex
\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\notindent \notag  \usepackage{amsmath} \usepackage[a4paper,margin=1in,portrait]{geometry}
\author{Elizabeth Hunt}
\date{\today}
\title{Homework 7}
\hypersetup{
 pdfauthor={Elizabeth Hunt},
 pdftitle={Homework 7},
 pdfkeywords={},
 pdfsubject={},
 pdfcreator={Emacs 28.2 (Org mode 9.7-pre)}, 
 pdflang={English}}
\begin{document}

\maketitle
\setlength\parindent{0pt}

\section{Question One}
\label{sec:orgb6d5cda}
See \texttt{UTEST(jacobi, solve\_jacobi)} in \texttt{test/jacobi.t.c} and the entry
\texttt{Jacobi / Gauss-Siedel -> solve\_jacobi} in the LIZFCM API documentation.
\section{Question Two}
\label{sec:org9786314}
We cannot just perform the Jacobi algorithm on a Leslie matrix since
it is obviously not diagonally dominant - which is a requirement. It is
certainly not always the case, but, if a Leslie matrix \(L\) is invertible, we can
first perform gaussian elimination on \(L\) augmented with \(n_{k+1}\)
to obtain \(n_k\) with the Jacobi method. See \texttt{UTEST(jacobi, leslie\_solve)}
in \texttt{test/jacobi.t.c} for an example wherein this method is tested on a Leslie
matrix to recompute a given initial population distribution.

In terms of accuracy, an LU factorization and back substitution approach will
always be as correct as possible within the limits of computation; it's a
direct solution method. It's simply the nature of the Jacobi algorithm being
a convergent solution that determines its accuracy.

LU factorization also performs in order \(O(n^3)\) runtime for an \(n \times n\)
matrix, whereas the Jacobi algorithm runs in order \(O(k n^2) = O(n^2)\) on average
but with the con that \(k\) is given by some function on both the convergence criteria and the number of
nonzero entries in the matrix - which might end up worse in some cases than the LU decomp approach.

\section{Question Three}
\label{sec:org0ea87d0}
See \texttt{UTEST(jacobi, gauss\_siedel\_solve)} in \texttt{test/jacobi.t.c} which runs the same
unit test as \texttt{UTEST(jacobi, solve\_jacobi)} but using the
\texttt{Jacobi / Gauss-Siedel -> gauss\_siedel\_solve} method as documented in the LIZFCM API reference.

\section{Question Four, Five}
\label{sec:org8eea2ae}
We produce the following operation counts (by hackily adding the operation count as the last element
to the solution vector) and errors - the sum of each vector elements' absolute value away from 1.0
using the proceeding patch and unit test.

\begin{center}
\begin{tabular}{rrrrrrr}
N & JAC opr & JAC err & GS opr & GS err & LU opr & LU err\\[0pt]
5 & 1622 & 0.001244 & 577 & 0.000098 & 430 & 0.000000\\[0pt]
6 & 2812 & 0.001205 & 775 & 0.000080 & 681 & 0.000000\\[0pt]
7 & 5396 & 0.001187 & 860 & 0.000178 & 1015 & 0.000000\\[0pt]
8 & 5618 & 0.001468 & 1255 & 0.000121 & 1444 & 0.000000\\[0pt]
9 & 7534 & 0.001638 & 1754 & 0.000091 & 1980 & 0.000000\\[0pt]
10 & 10342 & 0.001425 & 1847 & 0.000435 & 2635 & 0.000000\\[0pt]
11 & 12870 & 0.001595 & 2185 & 0.000368 & 3421 & 0.000000\\[0pt]
12 & 17511 & 0.001860 & 2912 & 0.000322 & 4350 & 0.000000\\[0pt]
13 & 16226 & 0.001631 & 3362 & 0.000270 & 5434 & 0.000000\\[0pt]
14 & 34333 & 0.001976 & 3844 & 0.000121 & 6685 & 0.000000\\[0pt]
15 & 38474 & 0.001922 & 4358 & 0.000311 & 8115 & 0.000000\\[0pt]
16 & 40405 & 0.002061 & 4904 & 0.000204 & 9736 & 0.000000\\[0pt]
17 & 58518 & 0.002125 & 5482 & 0.000311 & 11560 & 0.000000\\[0pt]
18 & 68079 & 0.002114 & 6092 & 0.000279 & 13599 & 0.000000\\[0pt]
19 & 95802 & 0.002159 & 6734 & 0.000335 & 15865 & 0.000000\\[0pt]
20 & 85696 & 0.002141 & 7408 & 0.000289 & 18370 & 0.000000\\[0pt]
21 & 89026 & 0.002316 & 8114 & 0.000393 & 21126 & 0.000000\\[0pt]
22 & 101537 & 0.002344 & 8852 & 0.000414 & 24145 & 0.000000\\[0pt]
23 & 148040 & 0.002323 & 9622 & 0.000230 & 27439 & 0.000000\\[0pt]
24 & 137605 & 0.002348 & 10424 & 0.000213 & 31020 & 0.000000\\[0pt]
25 & 169374 & 0.002409 & 11258 & 0.000894 & 34900 & 0.000000\\[0pt]
26 & 215166 & 0.002502 & 12124 & 0.000564 & 39091 & 0.000000\\[0pt]
27 & 175476 & 0.002616 & 13022 & 0.000535 & 43605 & 0.000000\\[0pt]
28 & 268454 & 0.002651 & 13952 & 0.000690 & 48454 & 0.000000\\[0pt]
29 & 267034 & 0.002697 & 14914 & 0.000675 & 53650 & 0.000000\\[0pt]
30 & 277193 & 0.002686 & 15908 & 0.000542 & 59205 & 0.000000\\[0pt]
31 & 336792 & 0.002736 & 16934 & 0.000390 & 65131 & 0.000000\\[0pt]
32 & 293958 & 0.002741 & 17992 & 0.000660 & 71440 & 0.000000\\[0pt]
33 & 323638 & 0.002893 & 19082 & 0.001072 & 78144 & 0.000000\\[0pt]
34 & 375104 & 0.003001 & 20204 & 0.001018 & 85255 & 0.000000\\[0pt]
35 & 436092 & 0.003004 & 21358 & 0.000912 & 92785 & 0.000000\\[0pt]
36 & 538143 & 0.003005 & 22544 & 0.000954 & 100746 & 0.000000\\[0pt]
37 & 511886 & 0.003029 & 23762 & 0.000462 & 109150 & 0.000000\\[0pt]
38 & 551332 & 0.003070 & 25012 & 0.000996 & 118009 & 0.000000\\[0pt]
39 & 592750 & 0.003110 & 26294 & 0.000989 & 127335 & 0.000000\\[0pt]
40 & 704208 & 0.003165 & 27608 & 0.000583 & 137140 & 0.000000\\[0pt]
\end{tabular}
\end{center}

\begin{verbatim}
diff --git a/src/matrix.c b/src/matrix.c
index 901a426..af5529f 100644
--- a/src/matrix.c
+++ b/src/matrix.c
@@ -144,20 +144,54 @@ Array_double *solve_matrix_lu_bsubst(Matrix_double *m, Array_double *b) {
   assert(b->size == m->rows);
   assert(m->rows == m->cols);

+  double opr = 0;
+
+  opr += b->size;
   Array_double *x = copy_vector(b);
+
+  size_t n = m->rows;
+  opr += n * n;     // (u copy)
+  opr += n * n;     // l_empty
+  opr += n * n + n; // copy + put_identity_diagonal
+  opr += n;         // pivot check
+  opr += m->cols;
+  for (size_t x = 0; x < m->cols; x++) {
+    opr += (m->rows - (x + 1));
+    for (size_t y = x + 1; y < m->rows; y++) {
+      opr += 1;
+      opr += 2;     // -factor
+      opr += 4 * n; // scale, add_v, free_vector
+      opr += 1;     // -factor
+    }
+  }
+  opr += n;
   Matrix_double **u_l = lu_decomp(m);
+
   Matrix_double *u = u_l[0];
   Matrix_double *l = u_l[1];

+  opr += n;
+  for (int64_t row = n - 1; row >= 0; row--) {
+    opr += 2 * (n - row);
+    opr += 1;
+  }
   Array_double *b_fsub = fsubst(l, b);
+
+  opr += n;
+  for (size_t x = 0; x < n; x++) {
+    opr += 2 * (x + 1);
+    opr += 1; // /= l->data[row]->data[row]
+  }
   x = bsubst(u, b_fsub);
-  free_vector(b_fsub);

+  free_vector(b_fsub);
   free_matrix(u);
   free_matrix(l);
   free(u_l);

-  return x;
+  Array_double *copy = add_element(x, opr);
+  free_vector(x);
+  return copy;
 }

 Matrix_double *gaussian_elimination(Matrix_double *m) {
@@ -231,18 +265,36 @@ Array_double *jacobi_solve(Matrix_double *m, Array_double *b,
   assert(b->size == m->cols);
   size_t iter = max_iterations;

+  double opr = 0;
+
+  opr += 2 * b->size; // to initialize two vectors with the same dim of b twice
   Array_double *x_k = InitArrayWithSize(double, b->size, 0.0);
   Array_double *x_k_1 =
       InitArrayWithSize(double, b->size, rand_from(0.1, 10.0));

+  // add since these wouldn't be accounter for after the loop
+  opr += 1; // iter decrement
+  opr +=
+      3 * x_k_1->size; // 1 to perform x_k_1, x_k and 2 to perform ||x_k_1||_2
   while ((--iter) > 0 && l2_distance(x_k_1, x_k) > l2_convergence_tolerance) {
+    opr += 1; // iter decrement
+    opr +=
+        3 * x_k_1->size; // 1 to perform x_k_1, x_k and 2 to perform ||x_k_1||_2
+
+    opr += m->rows; // row for add oprs
     for (size_t i = 0; i < m->rows; i++) {
       double delta = 0.0;
+
+      opr += m->cols;
       for (size_t j = 0; j < m->cols; j++) {
         if (i == j)
           continue;
+
+        opr += 1;
         delta += m->data[i]->data[j] * x_k->data[j];
       }
+
+      opr += 2;
       x_k_1->data[i] = (b->data[i] - delta) / m->data[i]->data[i];
     }

@@ -251,8 +303,9 @@ Array_double *jacobi_solve(Matrix_double *m, Array_double *b,
     x_k_1 = tmp;
   }

-  free_vector(x_k);
-  return x_k_1;
+  Array_double *copy = add_element(x_k_1, opr);
+  free_vector(x_k_1);
+  return copy;
 }

 Array_double *gauss_siedel_solve(Matrix_double *m, Array_double *b,
@@ -262,30 +315,48 @@ Array_double *gauss_siedel_solve(Matrix_double *m, Array_double *b,
   assert(b->size == m->cols);
   size_t iter = max_iterations;

+  double opr = 0;
+
+  opr += 2 * b->size; // to initialize two vectors with the same dim of b twice
   Array_double *x_k = InitArrayWithSize(double, b->size, 0.0);
   Array_double *x_k_1 =
       InitArrayWithSize(double, b->size, rand_from(0.1, 10.0));

   while ((--iter) > 0) {
+    opr += 1; // iter decrement
+
+    opr += x_k->size; // copy oprs
     for (size_t i = 0; i < x_k->size; i++)
       x_k->data[i] = x_k_1->data[i];

+    opr += m->rows; // row for add oprs
     for (size_t i = 0; i < m->rows; i++) {
       double delta = 0.0;
+
+      opr += m->cols;
       for (size_t j = 0; j < m->cols; j++) {
         if (i == j)
           continue;
+
+        opr += 1;
         delta += m->data[i]->data[j] * x_k_1->data[j];
       }
+
+      opr += 2;
       x_k_1->data[i] = (b->data[i] - delta) / m->data[i]->data[i];
     }

+    opr +=
+        3 * x_k_1->size; // 1 to perform x_k_1, x_k and 2 to perform ||x_k_1||_2
     if (l2_distance(x_k_1, x_k) <= l2_convergence_tolerance)
       break;
   }

   free_vector(x_k);
-  return x_k_1;
+
+  Array_double *copy = add_element(x_k_1, opr);
+  free_vector(x_k_1);
+  return copy;
 }
\end{verbatim}


And this unit test:
\begin{verbatim}
UTEST(hw_8, p4_5) {
  printf("| N | JAC opr | JAC err | GS opr | GS err | LU opr | LU err | \n");

  for (size_t i = 5; i < 100; i++) {
    Matrix_double *m = generate_ddm(i);
    double oprs[3] = {0.0, 0.0, 0.0};
    double errs[3] = {0.0, 0.0, 0.0};

    Array_double *b_1 = InitArrayWithSize(double, m->rows, 1.0);
    Array_double *b = m_dot_v(m, b_1);
    double tolerance = 0.001;
    size_t max_iter = 400;

    // JACOBI
    {
      Array_double *solution_with_opr_count =
          jacobi_solve(m, b, tolerance, max_iter);
      Array_double *solution = slice_element(solution_with_opr_count,
                                             solution_with_opr_count->size - 1);

      for (size_t i = 0; i < solution->size; i++)
        errs[0] += fabs(solution->data[i] - 1.0);

      oprs[0] =
          solution_with_opr_count->data[solution_with_opr_count->size - 1];

      free_vector(solution);
      free_vector(solution_with_opr_count);
    }

    // GAUSS-SIEDEL
    {
      Array_double *solution_with_opr_count =
          gauss_siedel_solve(m, b, tolerance, max_iter);
      Array_double *solution = slice_element(solution_with_opr_count,
                                             solution_with_opr_count->size - 1);

      for (size_t i = 0; i < solution->size; i++)
        errs[1] += fabs(solution->data[i] - 1.0);

      oprs[1] =
          solution_with_opr_count->data[solution_with_opr_count->size - 1];

      free_vector(solution);
      free_vector(solution_with_opr_count);
    }

    // LU-BSUBST
    {
      Array_double *solution_with_opr_count = solve_matrix_lu_bsubst(m, b);
      Array_double *solution = slice_element(solution_with_opr_count,
                                             solution_with_opr_count->size - 1);

      for (size_t i = 0; i < solution->size; i++)
        errs[2] += fabs(solution->data[i] - 1.0);

      oprs[2] =
          solution_with_opr_count->data[solution_with_opr_count->size - 1];

      free_vector(solution);
      free_vector(solution_with_opr_count);
    }
    free_matrix(m);
    free_vector(b_1);
    free_vector(b);

    printf("| %zu | %f | %f | %f | %f | %f | %f | \n", i, oprs[0], errs[0],
           oprs[1], errs[1], oprs[2], errs[2]);
  }
}
\end{verbatim}
\end{document}