summaryrefslogtreecommitdiff
path: root/src/eigen.c
blob: 92ef88c5630b2bd422c33c2691da58ff182f67fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#include "lizfcm.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <string.h>

Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
                             Array_double *age_class_offspring) {
  assert(age_class_surivor_ratio->size + 1 == age_class_offspring->size);

  Matrix_double *leslie = InitMatrixWithSize(double, age_class_offspring->size,
                                             age_class_offspring->size, 0.0);

  free_vector(leslie->data[0]);
  leslie->data[0] = copy_vector(age_class_offspring);

  for (size_t i = 0; i < age_class_surivor_ratio->size; i++)
    leslie->data[i + 1]->data[i] = age_class_surivor_ratio->data[i];
  return leslie;
}

double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
                           size_t max_iterations) {
  assert(m->rows == m->cols);
  assert(m->rows == v->size);

  double error = tolerance;
  size_t iter = max_iterations;
  double lambda = 0.0;
  Array_double *eigenvector_1 = copy_vector(v);

  while (error >= tolerance && (--iter) > 0) {
    Array_double *eigenvector_2 = m_dot_v(m, eigenvector_1);
    Array_double *normalized_eigenvector_2 =
        scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
    free_vector(eigenvector_2);
    eigenvector_2 = normalized_eigenvector_2;

    Array_double *mx = m_dot_v(m, eigenvector_2);
    double new_lambda =
        v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);

    error = fabs(new_lambda - lambda);
    lambda = new_lambda;
    free_vector(eigenvector_1);
    eigenvector_1 = eigenvector_2;
  }

  return lambda;
}

double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v,
                                      double shift, double tolerance,
                                      size_t max_iterations) {
  assert(m->rows == m->cols);
  assert(m->rows == v->size);

  Matrix_double *m_c = copy_matrix(m);
  for (size_t y = 0; y < m_c->rows; ++y)
    m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift;

  double error = tolerance;
  size_t iter = max_iterations;
  double lambda = shift;
  Array_double *eigenvector_1 = copy_vector(v);

  while (error >= tolerance && (--iter) > 0) {
    Array_double *eigenvector_2 = solve_matrix_lu_bsubst(m_c, eigenvector_1);
    Array_double *normalized_eigenvector_2 =
        scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
    free_vector(eigenvector_2);

    Array_double *mx = m_dot_v(m, normalized_eigenvector_2);
    double new_lambda =
        v_dot_v(mx, normalized_eigenvector_2) /
        v_dot_v(normalized_eigenvector_2, normalized_eigenvector_2);

    error = fabs(new_lambda - lambda);
    lambda = new_lambda;
    free_vector(eigenvector_1);
    eigenvector_1 = normalized_eigenvector_2;
  }

  return lambda;
}

Array_double *partition_find_eigenvalues(Matrix_double *m,
                                         Matrix_double *guesses,
                                         double tolerance,
                                         size_t max_iterations) {
  assert(guesses->rows >=
         2); // we need at least, the most and least dominant eigenvalues

  double end = dominant_eigenvalue(m, guesses->data[guesses->rows - 1],
                                   tolerance, max_iterations);
  double begin =
      least_dominant_eigenvalue(m, guesses->data[0], tolerance, max_iterations);

  double delta = (end - begin) / guesses->rows;
  Array_double *eigenvalues = InitArrayWithSize(double, guesses->rows, 0.0);
  for (size_t i = 0; i < guesses->rows; i++) {
    double box_midpoint = ((delta * i) + (delta * (i + 1))) / 2;

    double nearest_eigenvalue = shift_inverse_power_eigenvalue(
        m, guesses->data[i], box_midpoint, tolerance, max_iterations);

    eigenvalues->data[i] = nearest_eigenvalue;
  }

  return eigenvalues;
}

double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
                                 double tolerance, size_t max_iterations) {
  return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
}