blob: 40b41b826a63ac5463f0a994492694559b336414 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
#include "lizfcm.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
Array_double *age_class_offspring) {
assert(age_class_surivor_ratio->size + 1 == age_class_offspring->size);
Matrix_double *leslie = InitMatrixWithSize(double, age_class_offspring->size,
age_class_offspring->size, 0.0);
free_vector(leslie->data[0]);
leslie->data[0] = age_class_offspring;
for (size_t i = 0; i < age_class_surivor_ratio->size; i++)
leslie->data[i + 1]->data[i] = age_class_surivor_ratio->data[i];
return leslie;
}
double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
size_t max_iterations) {
assert(m->rows == m->cols);
assert(m->rows == v->size);
double error = tolerance;
size_t iter = max_iterations;
double lambda = 0.0;
Array_double *eigenvector_1 = copy_vector(v);
while (error >= tolerance && (--iter) > 0) {
Array_double *eigenvector_2 = m_dot_v(m, eigenvector_1);
Array_double *mx = m_dot_v(m, eigenvector_2);
double new_lambda =
v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
error = fabs(new_lambda - lambda);
lambda = new_lambda;
free_vector(eigenvector_1);
eigenvector_1 = eigenvector_2;
}
return lambda;
}
|