1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
#include "lizfcm.test.h"
UTEST(eigen, leslie_matrix) {
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
m->data[0]->data[0] = 0.0;
m->data[0]->data[1] = 1.5;
m->data[0]->data[2] = 0.8;
m->data[1]->data[0] = 0.8;
m->data[2]->data[1] = 0.55;
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
EXPECT_TRUE(matrix_equal(leslie, m));
free_matrix(leslie);
free_matrix(m);
free_vector(felicity);
free_vector(survivor_ratios);
}
UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
double tolerance = 0.0001;
uint64_t max_iterations = 64;
double expect_dominant_eigenvalue = 1.22005;
double approx_dominant_eigenvalue =
dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations);
EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
tolerance);
free_vector(v_guess);
free_vector(survivor_ratios);
free_vector(felicity);
free_matrix(leslie);
}
UTEST(eigen, least_dominant_eigenvalue) {
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
m->data[0]->data[0] = 2.0;
m->data[0]->data[1] = 2.0;
m->data[0]->data[2] = 4.0;
m->data[1]->data[0] = 1.0;
m->data[1]->data[1] = 4.0;
m->data[1]->data[2] = 7.0;
m->data[2]->data[1] = 2.0;
m->data[2]->data[2] = 6.0;
double expected_least_dominant_eigenvalue = 0.87689; // 5 - sqrt(17)
double tolerance = 0.0001;
uint64_t max_iterations = 64;
Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
double approx_least_dominant_eigenvalue =
least_dominant_eigenvalue(m, v_guess, tolerance, max_iterations);
EXPECT_NEAR(expected_least_dominant_eigenvalue,
approx_least_dominant_eigenvalue, tolerance);
}
UTEST(eigen, dominant_eigenvalue) {
Matrix_double *m = InitMatrixWithSize(double, 2, 2, 0.0);
m->data[0]->data[0] = 2.0;
m->data[0]->data[1] = -12.0;
m->data[1]->data[0] = 1.0;
m->data[1]->data[1] = -5.0;
Array_double *v_guess = InitArrayWithSize(double, 2, 1.0);
double tolerance = 0.0001;
uint64_t max_iterations = 64;
double expect_dominant_eigenvalue = -2.0;
double approx_dominant_eigenvalue =
dominant_eigenvalue(m, v_guess, tolerance, max_iterations);
EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
tolerance);
free_matrix(m);
free_vector(v_guess);
}
|