blob: abb5ed999dacd28f5f4c69b30fb4abaf61b4d403 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
#include "game.cuh"
// Count the number of life neighbors a cell has
__device__ int neighbors(struct GAME game, int x, int y) {
int n = 0;
for (int dy = -1; dy <= 1; dy++) {
for (int dx = -1; dx <= 1; dx++) {
if (!(dx == 0 && dy == 0) && (x+dx) > 0 && (y+dy) > 0 && (x+dx) < game.width+(game.padding*2) && (y+dy) < game.height+(game.padding*2)) {
if (game.grid[(y+dy) * (game.width+game.padding*2) + (x+dx)]) {
n++;
}
}
}
}
return n;
}
// Compute the next iteration of a board
// We have to give it the newGrid as a parameter otherwise
// each block will be computing its own version of the next grid
__global__ void next(struct GAME game, unsigned char* newGrid) {
int idy = blockDim.y * blockIdx.y + threadIdx.y;
int idx = blockDim.x * blockIdx.x + threadIdx.x;
if (idy < game.height+game.padding*2 && idx < game.width+game.padding*2) {
int my_neighbors = neighbors(game, idx, idy);
int my_coord = idy * (game.width+game.padding*2) + idx;
newGrid[my_coord] = 0; // It's possible that there are artifacts from the last iteration
if (game.grid[my_coord]) {
if (my_neighbors < 2 || my_neighbors > 3) {
newGrid[my_coord] = 0;
} else {
newGrid[my_coord] = 1;
}
} else {
if (my_neighbors == 3) {
newGrid[my_coord] = 1;
}
}
}
}
// Randomly assign life value to each cell
void randomize(struct GAME* game) {
for (int y = game->padding; y < game->height+game->padding; y++) {
for (int x = game->padding; x < game->width+game->padding; x++) {
game->grid[y*(game->width+game->padding*2) + x] = (unsigned char) rand() & 1;
}
}
}
|