summaryrefslogtreecommitdiff
path: root/serial/src/main.c
blob: c7cdacf5e57d11fb82fec1d84ae7c7668ede7ba4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
#include <string.h>

#include "file.h"
#include "game.h"
#include "create_grid.h"

/*
  Rules for life:
  Any live cell with fewer than two live neighbors dies (underpopulation).
  Any live cell with two or three live neighbors continues to live.
  Any live cell with more than three live neighbors dies (overpopulation).
  Any dead cell with exactly three live neighbors becomes a live cell (reproduction).
 */
#define PADDING 10
//#define VERBOSE 1
#define SEED 100

// Do the simulation
void simulate(int argc, char** argv) {
  srand(SEED);
  char* filename;
  struct GAME game;
  game.padding = PADDING;
  int iterations, log_each_step;
  if (argc == 7) {
    // Parse the arguments
    filename = argv[2];
    game.width = atoi(argv[3]);
    game.height = atoi(argv[4]);
    iterations = atoi(argv[5]);
    log_each_step = atoi(argv[6]);
  } else {
    printf("Usage: ./gol simulate <filename | random> <width> <height> <iterations> <log-each-step?1:0>\n");
    filename = "output/out.bin";
    game.height = 10;
    game.width = 10;
    iterations = 5;
    log_each_step = 0;
  }

  clock_t global_start = clock();

  // Allocate space for current grid (1 byte per tile)
  game.grid = malloc(sizeof(unsigned char*) * (game.height+(2*game.padding)));
  for (int i = 0; i < game.height+(2*game.padding); i++) {
    game.grid[i] = malloc(sizeof(unsigned char) * (game.width+(2*game.padding)));
    memset(game.grid[i], 0, game.width+(2*game.padding));
  }

  // Choose where to read initial position
  if (strcmp(filename, "random") == 0) {
    randomize(&game);
  } else {
    read_in(filename, &game);
  }  

  char iteration_file[1024];

  // Timing code
  double time_computing_life = 0;
  clock_t start, end;

  for (int i = 0; i <= iterations; i++) {
    // Iteration 0 will just be the initial grid
    if (i > 0) {
      start = clock();
      // Compute the next grid
      next(&game);
      end = clock();
      time_computing_life += ((double) (end - start)) / CLOCKS_PER_SEC;
    }
    if (log_each_step) {
      // If we are logging each step, perform IO operations
      #if VERBOSE == 1
      printf("\n===Iteration %i===\n", i);
      // Print the board without the padding elements
      for (int y = game.padding; y < game.height+game.padding; y++) {
        for (int x = game.padding; x < game.width+game.padding; x++) {
          printf("%s ", game.grid[y][x] ? "X" : " ");
        }
        printf("\n");
      }
      printf("===End iteration %i===\n", i);
      #endif
      // Save to a file
      sprintf(iteration_file, "output/iteration-%07d.bin", i);
      write_out(iteration_file, &game);
    }
  }
  double total_clock_time = ((double) (clock() - global_start)) / CLOCKS_PER_SEC;
  printf("\n===Timing===\nTime computing life: %f\nClock time: %f\n", time_computing_life, total_clock_time);
}

int main(int argc, char** argv) {
  if (argc >= 2) {
    if (strcmp(argv[1], "simulate") == 0) {
      simulate(argc, argv);
    } else if (strcmp(argv[1], "create-grid") == 0) {
      create_grid(argc, argv);
    } else {
      printf("Unknown input: %s\n", argv[1]);
      exit(1);
    }
  } else {
    printf("Usage: ./gol <simulate | create-grid>\n");
    exit(1);
  }
  return 0;
}