summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorElizabeth Hunt <elizabeth.hunt@simponic.xyz>2023-11-27 13:27:49 -0700
committerElizabeth Hunt <elizabeth.hunt@simponic.xyz>2023-11-27 13:27:49 -0700
commit2a35f68ac4ba682fcacf9d003efda6fc4c16209c (patch)
treee79f095598fb20b3b584e2f3816b2c4716f6717d
parentf50a1c5a4db97a8fad7c955c7733f1f82697e07e (diff)
downloadcmath-2a35f68ac4ba682fcacf9d003efda6fc4c16209c.tar.gz
cmath-2a35f68ac4ba682fcacf9d003efda6fc4c16209c.zip
add least dominant eigenvalue
-rw-r--r--inc/lizfcm.h3
-rw-r--r--src/eigen.c35
-rw-r--r--test/eigen.t.c24
3 files changed, 62 insertions, 0 deletions
diff --git a/inc/lizfcm.h b/inc/lizfcm.h
index 4cdba8d..295aab0 100644
--- a/inc/lizfcm.h
+++ b/inc/lizfcm.h
@@ -76,6 +76,9 @@ extern double fixed_point_secant_bisection_method(double (*f)(double),
extern double dominant_eigenvalue(Matrix_double *m, Array_double *v,
double tolerance, size_t max_iterations);
+extern double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
+ double tolerance,
+ size_t max_iterations);
extern Matrix_double *leslie_matrix(Array_double *age_class_surivor_ratio,
Array_double *age_class_offspring);
#endif // LIZFCM_H
diff --git a/src/eigen.c b/src/eigen.c
index 36ccc92..8fcf5c4 100644
--- a/src/eigen.c
+++ b/src/eigen.c
@@ -48,3 +48,38 @@ double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
return lambda;
}
+
+double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
+ double tolerance, size_t max_iterations) {
+ assert(m->rows == m->cols);
+ assert(m->rows == v->size);
+
+ double shift = 0.0;
+ Matrix_double *m_c = copy_matrix(m);
+ for (size_t y = 0; y < m_c->rows; ++y)
+ m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift;
+
+ double error = tolerance;
+ size_t iter = max_iterations;
+ double lambda = shift;
+ Array_double *eigenvector_1 = copy_vector(v);
+
+ while (error >= tolerance && (--iter) > 0) {
+ Array_double *eigenvector_2 = solve_matrix_lu_bsubst(m_c, eigenvector_1);
+ Array_double *normalized_eigenvector_2 =
+ scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
+ free_vector(eigenvector_2);
+ eigenvector_2 = normalized_eigenvector_2;
+
+ Array_double *mx = m_dot_v(m, eigenvector_2);
+ double new_lambda =
+ v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
+
+ error = fabs(new_lambda - lambda);
+ lambda = new_lambda;
+ free_vector(eigenvector_1);
+ eigenvector_1 = eigenvector_2;
+ }
+
+ return lambda;
+}
diff --git a/test/eigen.t.c b/test/eigen.t.c
index f271bf2..0ad0bd0 100644
--- a/test/eigen.t.c
+++ b/test/eigen.t.c
@@ -43,6 +43,30 @@ UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
free_matrix(leslie);
}
+UTEST(eigen, least_dominant_eigenvalue) {
+
+ Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
+ m->data[0]->data[0] = 2.0;
+ m->data[0]->data[1] = 2.0;
+ m->data[0]->data[2] = 4.0;
+ m->data[1]->data[0] = 1.0;
+ m->data[1]->data[1] = 4.0;
+ m->data[1]->data[2] = 7.0;
+ m->data[2]->data[1] = 2.0;
+ m->data[2]->data[2] = 6.0;
+
+ double expected_least_dominant_eigenvalue = 0.87689; // 5 - sqrt(17)
+ double tolerance = 0.0001;
+ uint64_t max_iterations = 64;
+
+ Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
+ double approx_least_dominant_eigenvalue =
+ least_dominant_eigenvalue(m, v_guess, tolerance, max_iterations);
+
+ EXPECT_NEAR(expected_least_dominant_eigenvalue,
+ approx_least_dominant_eigenvalue, tolerance);
+}
+
UTEST(eigen, dominant_eigenvalue) {
Matrix_double *m = InitMatrixWithSize(double, 2, 2, 0.0);
m->data[0]->data[0] = 2.0;