diff options
author | Elizabeth Hunt <elizabeth.hunt@simponic.xyz> | 2023-11-27 14:45:48 -0700 |
---|---|---|
committer | Elizabeth Hunt <elizabeth.hunt@simponic.xyz> | 2023-11-27 14:54:39 -0700 |
commit | 0981ffa00ce520df1134714206a70bcc1a08303e (patch) | |
tree | f16746740c43bbaa582392c3d702b1d0ae16876e /test/eigen.t.c | |
parent | 793c01c9bd61a5b461b44fc7ede04cc1dd90a4ec (diff) | |
download | cmath-0981ffa00ce520df1134714206a70bcc1a08303e.tar.gz cmath-0981ffa00ce520df1134714206a70bcc1a08303e.zip |
q5 hw7
Diffstat (limited to 'test/eigen.t.c')
-rw-r--r-- | test/eigen.t.c | 35 |
1 files changed, 35 insertions, 0 deletions
diff --git a/test/eigen.t.c b/test/eigen.t.c index 5a20d86..dc01aa7 100644 --- a/test/eigen.t.c +++ b/test/eigen.t.c @@ -1,4 +1,5 @@ #include "lizfcm.test.h" +#include <math.h> Matrix_double *eigen_test_matrix() { // produces a matrix that has eigenvalues [5 + sqrt{17}, 2, 5 - sqrt{17}] @@ -69,6 +70,40 @@ UTEST(eigen, shifted_eigenvalue) { EXPECT_NEAR(approx_middle_eigenvalue, expected_middle_eigenvalue, tolerance); } +UTEST(eigen, partition_find_eigenvalues) { + Matrix_double *m = eigen_test_matrix(); + + double least_dominant_eigenvalue = 0.87689; // 5 - sqrt{17} + double dominant_eigenvalue = 9.12311; // 5 + sqrt{17} + double expected_middle_eigenvalue = 2.0; + double expected_eigenvalues[3] = {least_dominant_eigenvalue, + expected_middle_eigenvalue, + dominant_eigenvalue}; + + size_t partitions = 10; + Matrix_double *guesses = InitMatrixWithSize(double, partitions, 3, 0.0); + for (size_t y = 0; y < guesses->rows; y++) { + free_vector(guesses->data[y]); + guesses->data[y] = InitArray(double, {0.5, 1.0, 0.75}); + } + + double tolerance = 0.0001; + uint64_t max_iterations = 64; + + int eigenvalues_found[3] = {false, false, false}; + Array_double *partition_eigenvalues = + partition_find_eigenvalues(m, guesses, tolerance, max_iterations); + + for (size_t i = 0; i < partition_eigenvalues->size; i++) + for (size_t eigenvalue_i = 0; eigenvalue_i < 3; eigenvalue_i++) + if (fabs(partition_eigenvalues->data[i] - expected_eigenvalues[i]) <= + tolerance) + eigenvalues_found[eigenvalue_i] = true; + + for (size_t eigenvalue_i = 0; eigenvalue_i < 3; eigenvalue_i++) + EXPECT_TRUE(eigenvalues_found[eigenvalue_i]); +} + UTEST(eigen, leslie_matrix_dominant_eigenvalue) { Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8}); Array_double *survivor_ratios = InitArray(double, {0.8, 0.55}); |