1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
#include "lizfcm.test.h"
#include <math.h>
Matrix_double *eigen_test_matrix() {
// produces a matrix that has eigenvalues [5 + sqrt{17}, 2, 5 - sqrt{17}]
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
m->data[0]->data[0] = 2.0;
m->data[0]->data[1] = 2.0;
m->data[0]->data[2] = 4.0;
m->data[1]->data[0] = 1.0;
m->data[1]->data[1] = 4.0;
m->data[1]->data[2] = 7.0;
m->data[2]->data[1] = 2.0;
m->data[2]->data[2] = 6.0;
return m;
}
UTEST(eigen, least_dominant_eigenvalue) {
Matrix_double *m = eigen_test_matrix();
double expected_least_dominant_eigenvalue = 0.87689; // 5 - sqrt(17)
double tolerance = 0.0001;
uint64_t max_iterations = 64;
Array_double *v_guess = InitArrayWithSize(double, 3, 1.0);
double approx_least_dominant_eigenvalue =
least_dominant_eigenvalue(m, v_guess, tolerance, max_iterations);
EXPECT_NEAR(expected_least_dominant_eigenvalue,
approx_least_dominant_eigenvalue, tolerance);
}
UTEST(eigen, dominant_eigenvalue) {
Matrix_double *m = InitMatrixWithSize(double, 2, 2, 0.0);
m->data[0]->data[0] = 2.0;
m->data[0]->data[1] = -12.0;
m->data[1]->data[0] = 1.0;
m->data[1]->data[1] = -5.0;
Array_double *v_guess = InitArrayWithSize(double, 2, 1.0);
double tolerance = 0.0001;
uint64_t max_iterations = 64;
double expect_dominant_eigenvalue = -2.0;
double approx_dominant_eigenvalue =
dominant_eigenvalue(m, v_guess, tolerance, max_iterations);
EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
tolerance);
free_matrix(m);
free_vector(v_guess);
}
UTEST(eigen, shifted_eigenvalue) {
Matrix_double *m = eigen_test_matrix();
double least_dominant_eigenvalue = 0.87689; // 5 - sqrt{17}
double dominant_eigenvalue = 9.12311; // 5 + sqrt{17}
double expected_middle_eigenvalue = 2.0;
double shift = (dominant_eigenvalue + least_dominant_eigenvalue) / 2.0;
double tolerance = 0.0001;
uint64_t max_iterations = 64;
Array_double *v_guess = InitArray(double, {0.5, 1.0, 0.75});
double approx_middle_eigenvalue = shift_inverse_power_eigenvalue(
m, v_guess, shift, tolerance, max_iterations);
EXPECT_NEAR(approx_middle_eigenvalue, expected_middle_eigenvalue, tolerance);
}
UTEST(eigen, partition_find_eigenvalues) {
Matrix_double *m = eigen_test_matrix();
double least_dominant_eigenvalue = 0.87689; // 5 - sqrt{17}
double dominant_eigenvalue = 9.12311; // 5 + sqrt{17}
double expected_middle_eigenvalue = 2.0;
double expected_eigenvalues[3] = {least_dominant_eigenvalue,
expected_middle_eigenvalue,
dominant_eigenvalue};
size_t partitions = 10;
Matrix_double *guesses = InitMatrixWithSize(double, partitions, 3, 0.0);
for (size_t y = 0; y < guesses->rows; y++) {
free_vector(guesses->data[y]);
guesses->data[y] = InitArray(double, {0.5, 1.0, 0.75});
}
double tolerance = 0.0001;
uint64_t max_iterations = 64;
int eigenvalues_found[3] = {false, false, false};
Array_double *partition_eigenvalues =
partition_find_eigenvalues(m, guesses, tolerance, max_iterations);
for (size_t i = 0; i < partition_eigenvalues->size; i++)
for (size_t eigenvalue_i = 0; eigenvalue_i < 3; eigenvalue_i++)
if (fabs(partition_eigenvalues->data[i] - expected_eigenvalues[i]) <=
tolerance)
eigenvalues_found[eigenvalue_i] = true;
for (size_t eigenvalue_i = 0; eigenvalue_i < 3; eigenvalue_i++)
EXPECT_TRUE(eigenvalues_found[eigenvalue_i]);
}
UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
double tolerance = 0.0001;
uint64_t max_iterations = 64;
double expect_dominant_eigenvalue = 1.22005;
double approx_dominant_eigenvalue =
dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations);
EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
tolerance);
free_vector(v_guess);
free_vector(survivor_ratios);
free_vector(felicity);
free_matrix(leslie);
}
UTEST(eigen, leslie_matrix) {
Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
m->data[0]->data[0] = 0.0;
m->data[0]->data[1] = 1.5;
m->data[0]->data[2] = 0.8;
m->data[1]->data[0] = 0.8;
m->data[2]->data[1] = 0.55;
Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
EXPECT_TRUE(matrix_equal(leslie, m));
free_matrix(leslie);
free_matrix(m);
free_vector(felicity);
free_vector(survivor_ratios);
}
|