summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--doc/software_manual.org40
-rw-r--r--homeworks/hw-7.org18
-rw-r--r--inc/lizfcm.h3
-rw-r--r--src/eigen.c19
-rw-r--r--test/eigen.t.c114
5 files changed, 128 insertions, 66 deletions
diff --git a/doc/software_manual.org b/doc/software_manual.org
index 1520431..d6c7331 100644
--- a/doc/software_manual.org
+++ b/doc/software_manual.org
@@ -1035,22 +1035,22 @@ double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
return lambda;
}
#+END_SRC
-*** ~least_dominant_eigenvalue~
+*** ~shift_inverse_power_eigenvalue~
+ Author: Elizabeth Hunt
+ Name: ~least_dominant_eigenvalue~
+ Location: ~src/eigen.c~
+ Input: a pointer to an invertible matrix ~m~, an initial eigenvector guess ~v~ (that is non
- zero or orthogonal to an eigenvector with the dominant eigenvalue), a ~tolerance~ and
- ~max_iterations~ that act as stop conditions
-+ Output: the least dominant eigenvalue with the lowest magnitude, approximated with the Inverse
- Power Iteration Method
+ zero or orthogonal to an eigenvector with the dominant eigenvalue), a ~shift~ to act as the
+ shifted \delta, and ~tolerance~ and ~max_iterations~ that act as stop conditions.
++ Output: the eigenvalue closest to ~shift~ with the lowest magnitude closest to 0, approximated
+ with the Inverse Power Iteration Method
#+BEGIN_SRC c
-double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
- double tolerance, size_t max_iterations) {
+double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v,
+ double shift, double tolerance,
+ size_t max_iterations) {
assert(m->rows == m->cols);
assert(m->rows == v->size);
- double shift = 0.0;
Matrix_double *m_c = copy_matrix(m);
for (size_t y = 0; y < m_c->rows; ++y)
m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift;
@@ -1065,22 +1065,38 @@ double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
Array_double *normalized_eigenvector_2 =
scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
free_vector(eigenvector_2);
- eigenvector_2 = normalized_eigenvector_2;
- Array_double *mx = m_dot_v(m, eigenvector_2);
+ Array_double *mx = m_dot_v(m, normalized_eigenvector_2);
double new_lambda =
- v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
+ v_dot_v(mx, normalized_eigenvector_2) /
+ v_dot_v(normalized_eigenvector_2, normalized_eigenvector_2);
error = fabs(new_lambda - lambda);
lambda = new_lambda;
free_vector(eigenvector_1);
- eigenvector_1 = eigenvector_2;
+ eigenvector_1 = normalized_eigenvector_2;
}
return lambda;
}
#+END_SRC
+*** ~least_dominant_eigenvalue~
++ Author: Elizabeth Hunt
++ Name: ~least_dominant_eigenvalue~
++ Location: ~src/eigen.c~
++ Input: a pointer to an invertible matrix ~m~, an initial eigenvector guess ~v~ (that is non
+ zero or orthogonal to an eigenvector with the dominant eigenvalue), a ~tolerance~ and
+ ~max_iterations~ that act as stop conditions.
++ Output: the least dominant eigenvalue with the lowest magnitude closest to 0, approximated
+ with the Inverse Power Iteration Method.
+#+BEGIN_SRC c
+double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
+ double tolerance, size_t max_iterations) {
+ return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
+}
+#+END_SRC
+
*** ~leslie_matrix~
+ Author: Elizabeth Hunt
+ Name: ~leslie_matrix~
diff --git a/homeworks/hw-7.org b/homeworks/hw-7.org
index dbdf6bb..ec8c23d 100644
--- a/homeworks/hw-7.org
+++ b/homeworks/hw-7.org
@@ -21,7 +21,23 @@ finds the least dominant eigenvalue on the matrix:
0 & 2 & 6
\end{bmatrix}
-which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$ and should produce $\sqrt{17}$.
+which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$ and should thus produce $5 - \sqrt{17}$.
See also the entry ~Eigen-Adjacent -> least_dominant_eigenvalue~ in the LIZFCM API
documentation.
+* Question Four
+See ~UTEST(eigen, shifted_eigenvalue)~ in ~test/eigen.t.c~ which
+finds the least dominant eigenvalue on the matrix:
+
+\begin{bmatrix}
+2 & 2 & 4 \\
+1 & 4 & 7 \\
+0 & 2 & 6
+\end{bmatrix}
+
+which has eigenvalues: $5 + \sqrt{17}, 2, 5 - \sqrt{17}$ and should thus produce $2.0$.
+
+With the initial guess: $[0.5, 1.0, 0.75]$.
+
+See also the entry ~Eigen-Adjacent -> shift_inverse_power_eigenvalue~ in the LIZFCM API
+documentation.
diff --git a/inc/lizfcm.h b/inc/lizfcm.h
index 295aab0..625e6bc 100644
--- a/inc/lizfcm.h
+++ b/inc/lizfcm.h
@@ -76,6 +76,9 @@ extern double fixed_point_secant_bisection_method(double (*f)(double),
extern double dominant_eigenvalue(Matrix_double *m, Array_double *v,
double tolerance, size_t max_iterations);
+extern double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v,
+ double shift, double tolerance,
+ size_t max_iterations);
extern double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
double tolerance,
size_t max_iterations);
diff --git a/src/eigen.c b/src/eigen.c
index 8fcf5c4..c4af461 100644
--- a/src/eigen.c
+++ b/src/eigen.c
@@ -49,12 +49,12 @@ double dominant_eigenvalue(Matrix_double *m, Array_double *v, double tolerance,
return lambda;
}
-double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
- double tolerance, size_t max_iterations) {
+double shift_inverse_power_eigenvalue(Matrix_double *m, Array_double *v,
+ double shift, double tolerance,
+ size_t max_iterations) {
assert(m->rows == m->cols);
assert(m->rows == v->size);
- double shift = 0.0;
Matrix_double *m_c = copy_matrix(m);
for (size_t y = 0; y < m_c->rows; ++y)
m_c->data[y]->data[y] = m_c->data[y]->data[y] - shift;
@@ -69,17 +69,22 @@ double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
Array_double *normalized_eigenvector_2 =
scale_v(eigenvector_2, 1.0 / linf_norm(eigenvector_2));
free_vector(eigenvector_2);
- eigenvector_2 = normalized_eigenvector_2;
- Array_double *mx = m_dot_v(m, eigenvector_2);
+ Array_double *mx = m_dot_v(m, normalized_eigenvector_2);
double new_lambda =
- v_dot_v(mx, eigenvector_2) / v_dot_v(eigenvector_2, eigenvector_2);
+ v_dot_v(mx, normalized_eigenvector_2) /
+ v_dot_v(normalized_eigenvector_2, normalized_eigenvector_2);
error = fabs(new_lambda - lambda);
lambda = new_lambda;
free_vector(eigenvector_1);
- eigenvector_1 = eigenvector_2;
+ eigenvector_1 = normalized_eigenvector_2;
}
return lambda;
}
+
+double least_dominant_eigenvalue(Matrix_double *m, Array_double *v,
+ double tolerance, size_t max_iterations) {
+ return shift_inverse_power_eigenvalue(m, v, 0.0, tolerance, max_iterations);
+}
diff --git a/test/eigen.t.c b/test/eigen.t.c
index 0ad0bd0..5a20d86 100644
--- a/test/eigen.t.c
+++ b/test/eigen.t.c
@@ -1,50 +1,7 @@
#include "lizfcm.test.h"
-UTEST(eigen, leslie_matrix) {
- Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
- Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
-
- Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
- m->data[0]->data[0] = 0.0;
- m->data[0]->data[1] = 1.5;
- m->data[0]->data[2] = 0.8;
- m->data[1]->data[0] = 0.8;
- m->data[2]->data[1] = 0.55;
-
- Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
-
- EXPECT_TRUE(matrix_equal(leslie, m));
-
- free_matrix(leslie);
- free_matrix(m);
- free_vector(felicity);
- free_vector(survivor_ratios);
-}
-
-UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
- Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
- Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
- Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
- Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
- double tolerance = 0.0001;
- uint64_t max_iterations = 64;
-
- double expect_dominant_eigenvalue = 1.22005;
-
- double approx_dominant_eigenvalue =
- dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations);
-
- EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
- tolerance);
-
- free_vector(v_guess);
- free_vector(survivor_ratios);
- free_vector(felicity);
- free_matrix(leslie);
-}
-
-UTEST(eigen, least_dominant_eigenvalue) {
-
+Matrix_double *eigen_test_matrix() {
+ // produces a matrix that has eigenvalues [5 + sqrt{17}, 2, 5 - sqrt{17}]
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
m->data[0]->data[0] = 2.0;
m->data[0]->data[1] = 2.0;
@@ -54,12 +11,17 @@ UTEST(eigen, least_dominant_eigenvalue) {
m->data[1]->data[2] = 7.0;
m->data[2]->data[1] = 2.0;
m->data[2]->data[2] = 6.0;
+ return m;
+}
+
+UTEST(eigen, least_dominant_eigenvalue) {
+ Matrix_double *m = eigen_test_matrix();
double expected_least_dominant_eigenvalue = 0.87689; // 5 - sqrt(17)
double tolerance = 0.0001;
uint64_t max_iterations = 64;
- Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
+ Array_double *v_guess = InitArrayWithSize(double, 3, 1.0);
double approx_least_dominant_eigenvalue =
least_dominant_eigenvalue(m, v_guess, tolerance, max_iterations);
@@ -88,3 +50,63 @@ UTEST(eigen, dominant_eigenvalue) {
free_matrix(m);
free_vector(v_guess);
}
+
+UTEST(eigen, shifted_eigenvalue) {
+ Matrix_double *m = eigen_test_matrix();
+
+ double least_dominant_eigenvalue = 0.87689; // 5 - sqrt{17}
+ double dominant_eigenvalue = 9.12311; // 5 + sqrt{17}
+ double expected_middle_eigenvalue = 2.0;
+ double shift = (dominant_eigenvalue + least_dominant_eigenvalue) / 2.0;
+
+ double tolerance = 0.0001;
+ uint64_t max_iterations = 64;
+ Array_double *v_guess = InitArray(double, {0.5, 1.0, 0.75});
+
+ double approx_middle_eigenvalue = shift_inverse_power_eigenvalue(
+ m, v_guess, shift, tolerance, max_iterations);
+
+ EXPECT_NEAR(approx_middle_eigenvalue, expected_middle_eigenvalue, tolerance);
+}
+
+UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
+ Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
+ Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
+ Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
+ Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
+ double tolerance = 0.0001;
+ uint64_t max_iterations = 64;
+
+ double expect_dominant_eigenvalue = 1.22005;
+
+ double approx_dominant_eigenvalue =
+ dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations);
+
+ EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
+ tolerance);
+
+ free_vector(v_guess);
+ free_vector(survivor_ratios);
+ free_vector(felicity);
+ free_matrix(leslie);
+}
+UTEST(eigen, leslie_matrix) {
+ Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
+ Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
+
+ Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
+ m->data[0]->data[0] = 0.0;
+ m->data[0]->data[1] = 1.5;
+ m->data[0]->data[2] = 0.8;
+ m->data[1]->data[0] = 0.8;
+ m->data[2]->data[1] = 0.55;
+
+ Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
+
+ EXPECT_TRUE(matrix_equal(leslie, m));
+
+ free_matrix(leslie);
+ free_matrix(m);
+ free_vector(felicity);
+ free_vector(survivor_ratios);
+}