summaryrefslogtreecommitdiff
path: root/test/eigen.t.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/eigen.t.c')
-rw-r--r--test/eigen.t.c114
1 files changed, 68 insertions, 46 deletions
diff --git a/test/eigen.t.c b/test/eigen.t.c
index 0ad0bd0..5a20d86 100644
--- a/test/eigen.t.c
+++ b/test/eigen.t.c
@@ -1,50 +1,7 @@
#include "lizfcm.test.h"
-UTEST(eigen, leslie_matrix) {
- Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
- Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
-
- Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
- m->data[0]->data[0] = 0.0;
- m->data[0]->data[1] = 1.5;
- m->data[0]->data[2] = 0.8;
- m->data[1]->data[0] = 0.8;
- m->data[2]->data[1] = 0.55;
-
- Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
-
- EXPECT_TRUE(matrix_equal(leslie, m));
-
- free_matrix(leslie);
- free_matrix(m);
- free_vector(felicity);
- free_vector(survivor_ratios);
-}
-
-UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
- Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
- Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
- Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
- Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
- double tolerance = 0.0001;
- uint64_t max_iterations = 64;
-
- double expect_dominant_eigenvalue = 1.22005;
-
- double approx_dominant_eigenvalue =
- dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations);
-
- EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
- tolerance);
-
- free_vector(v_guess);
- free_vector(survivor_ratios);
- free_vector(felicity);
- free_matrix(leslie);
-}
-
-UTEST(eigen, least_dominant_eigenvalue) {
-
+Matrix_double *eigen_test_matrix() {
+ // produces a matrix that has eigenvalues [5 + sqrt{17}, 2, 5 - sqrt{17}]
Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
m->data[0]->data[0] = 2.0;
m->data[0]->data[1] = 2.0;
@@ -54,12 +11,17 @@ UTEST(eigen, least_dominant_eigenvalue) {
m->data[1]->data[2] = 7.0;
m->data[2]->data[1] = 2.0;
m->data[2]->data[2] = 6.0;
+ return m;
+}
+
+UTEST(eigen, least_dominant_eigenvalue) {
+ Matrix_double *m = eigen_test_matrix();
double expected_least_dominant_eigenvalue = 0.87689; // 5 - sqrt(17)
double tolerance = 0.0001;
uint64_t max_iterations = 64;
- Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
+ Array_double *v_guess = InitArrayWithSize(double, 3, 1.0);
double approx_least_dominant_eigenvalue =
least_dominant_eigenvalue(m, v_guess, tolerance, max_iterations);
@@ -88,3 +50,63 @@ UTEST(eigen, dominant_eigenvalue) {
free_matrix(m);
free_vector(v_guess);
}
+
+UTEST(eigen, shifted_eigenvalue) {
+ Matrix_double *m = eigen_test_matrix();
+
+ double least_dominant_eigenvalue = 0.87689; // 5 - sqrt{17}
+ double dominant_eigenvalue = 9.12311; // 5 + sqrt{17}
+ double expected_middle_eigenvalue = 2.0;
+ double shift = (dominant_eigenvalue + least_dominant_eigenvalue) / 2.0;
+
+ double tolerance = 0.0001;
+ uint64_t max_iterations = 64;
+ Array_double *v_guess = InitArray(double, {0.5, 1.0, 0.75});
+
+ double approx_middle_eigenvalue = shift_inverse_power_eigenvalue(
+ m, v_guess, shift, tolerance, max_iterations);
+
+ EXPECT_NEAR(approx_middle_eigenvalue, expected_middle_eigenvalue, tolerance);
+}
+
+UTEST(eigen, leslie_matrix_dominant_eigenvalue) {
+ Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
+ Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
+ Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
+ Array_double *v_guess = InitArrayWithSize(double, 3, 2.0);
+ double tolerance = 0.0001;
+ uint64_t max_iterations = 64;
+
+ double expect_dominant_eigenvalue = 1.22005;
+
+ double approx_dominant_eigenvalue =
+ dominant_eigenvalue(leslie, v_guess, tolerance, max_iterations);
+
+ EXPECT_NEAR(expect_dominant_eigenvalue, approx_dominant_eigenvalue,
+ tolerance);
+
+ free_vector(v_guess);
+ free_vector(survivor_ratios);
+ free_vector(felicity);
+ free_matrix(leslie);
+}
+UTEST(eigen, leslie_matrix) {
+ Array_double *felicity = InitArray(double, {0.0, 1.5, 0.8});
+ Array_double *survivor_ratios = InitArray(double, {0.8, 0.55});
+
+ Matrix_double *m = InitMatrixWithSize(double, 3, 3, 0.0);
+ m->data[0]->data[0] = 0.0;
+ m->data[0]->data[1] = 1.5;
+ m->data[0]->data[2] = 0.8;
+ m->data[1]->data[0] = 0.8;
+ m->data[2]->data[1] = 0.55;
+
+ Matrix_double *leslie = leslie_matrix(survivor_ratios, felicity);
+
+ EXPECT_TRUE(matrix_equal(leslie, m));
+
+ free_matrix(leslie);
+ free_matrix(m);
+ free_vector(felicity);
+ free_vector(survivor_ratios);
+}